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Introduction

Model Predictive Control of a SISO Plant Toolbox concepts: horizons, constraints, tuning weights
(p. 1-2)
MIMO Plants (p. 1-9) Extension to plants with multiple inputs and outputs



1 Introduction

Model Predictive Control of a SISO Plant

The usual Model Predictive Control Toolbox™ application involves a plant
having multiple inputs and multiple outputs (a MIMO plant).

Consider instead the simpler application shown in Figure 1-1 (see the
nomenclature summary in Table 1-1). This plant could be a manufacturing
process, such as a unit operation in an oil refinery, or a device, such as an
electric motor. The main objective is to hold a single output, y , at a reference
value (or setpoint), r, by adjusting a single manipulated variable (or actuator)
u. This is what is generally termed a SISO (single-input single-output) plant.
The block labeled MPC represents a Model Predictive Controller designed to
achieve the control objective.

The SISO plant actually has multiple inputs, as shown in Figure 1-1. In
addition to the manipulated variable input, u, there may be a measured
disturbance, v, and an unmeasured disturbance, d.

Measured Disturbance

Noise
\Y; \Y; z
— — B
Setpoint A +
rpom MPC ctuator »| Plant P'a?]/t >V
d Output
Yy Unmeasured
Disturbance

Measured Output (Controlled Variable)

Figure 1-1: Block Diagram of a SISO Model Predictive Control Toolbox™
Application

The unmeasured disturbance is always present. As shown in Figure 1-1, it is
an independent input-not affected by the controller or the plant. It represents
all the unknown, unpredictable events that upset plant operation. (In the
context of Model Predictive Control, it can also represent unmodeled
dynamics.) When such an event occurs, the only indication is its effect on the
measured output, y, which is fed back to the controller as shown in Figure 1-1.

1-2



Model Predictive Control of a SISO Plant

Table 1-1: Model Predictive Control Toolbox™ Signals

Symbol Description

d Unmeasured disturbance. Unknown but for its effect
on the plant output. The controller provides feedback
compensation for such disturbances.

r Setpoint (or reference). The target value for the output.

u Manipulated variable (or actuator). The signal the
controller adjusts in order to achieve its objectives.

v Measured disturbance (optional). The controller
provides feedforward compensation for such
disturbances as they occur to minimize their impact on
the output.

y Output (or controlled variable). The signal to be held
at the setpoint. This is the “true” value, uncorrupted
by measurement noise.

y Measured output. Used to estimate the true value, y .

z Measurement noise. Represents electrical noise,

sampling errors, drifting calibration, and other effects
that impair measurement precision and accuracy.

Some applications have unmeasured disturbances only. A measured

disturbance, v, is another independent input affecting y . In contrast to d, the
controller receives the measured v directly, as shown in Figure 1-1. This allows
the controller to compensate for v’s impact on y immediately rather than

waiting until the effect appears in the y measurement. This is called
feedforward control.

In other words, Model Predictive Control Toolbox design always provides
feedback compensation for unmeasured disturbances and feedforward

compensation for any measured disturbance.

1-3
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Model Predictive Control Toolbox design requires a model of the impact that v
and u have on y (symbolically, v -y and u — ¥ ). It uses this plant model to
calculate the u adjustments needed to keep y at its setpoint.

This calculation considers the effect of any known constraints on the
adjustments (typically an actuator upper or lower bound, or a constraint on
how rapidly u can vary). One may also specify bounds on ¥ . These constraint
specifications are a distinguishing feature of Model Predictive Control Toolbox
design and can be particularly valuable when one has multiple control
objectives to be achieved via multiple adjustments (a MIMO plant). In the
context of a SISO system, such contraint handling is often termed an
anti-windup feature.

If the plant model is accurate, the plant responds quickly to adjustments in u,
and no constraints are encountered, feedforward compensation can counteract
the impact of v perfectly. In reality, model imperfections, physical limitations,
and unmeasured disturbances cause the y to deviate from its setpoint.
Therefore, Model Predictive Control Toolbox design includes a disturbance
model (d — y ) to estimate d and predict its impact on y . It then usesits u — ¥
model to calculate appropriate adjustments (feedback). This calculation also
considers the known constraints.

Various noise effects can corrupt the measurement. The signal z in Figure 1-1
represents such effects. They could vary randomly with a zero mean, or could
exhibit a non-zero, drifting bias. Model Predictive Control Toolbox design uses
a z — y model in combination with its d — ¥ model to remove the estimated
noise component (filtering).

The above feedforward/feedback actions comprise the controller’s regulator
mode. Model Predictive Control Toolbox design also provides a servo mode, i.e.,
it adjusts u such that ¥ tracks a time-varying setpoint.

The tracking accuracy depends on the plant characteristics (including
constraints), the accuracy of the © — ¥ model, and whether or not future
setpoint variations can be anticipated, i.e., known in advance. If so, it provides
feedforward compensation for these.

Typical Sampling Instant

Model Predictive Control Toolbox design generates a discrete-time controller —
one that takes action at regularly spaced, discrete time instants. The sampling
instants are the times at which the controller acts. The interval separating
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successive sampling instants is the sampling period, At (also called the control
interval). This section provides more details on the events occuring at each
sampling instant.

|l«—Past »la«—— Future ——p|

Yax b= — = — e —
(@) . .
roL_ _ _ _ Setpoint - = O
o)
o © e Measured
[ ]
? o o ® o Estimated
ymin __________ T T T T T T
~®—— Prediction Horizon, P —®
| | | | | | | |
U e e e e L e e e e ]
max
(b)
o-
B
(l)- 1]
e Past Moves
Control o Planned Moves
Horizon
u.
mhFr-——— 1+ — - — - — - — - — —
| | | | | | | | | | |

4 -3 -2 -1 Kk +1 +2 +3 +4 +5 +6 +7 +8 +9
Sampling Instants

Figure 1-2: Controller State at the kth Sampling Instant
Figure 1-2 shows the state of a hypothetical SISO model preditive control
system that has been operating for many sampling instants. Integer %

represents the current instant. The latest measured output, y, and previous
measurements, yy_1, Yk-2, ---, are known and are the filled circles in
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Figure 1-2 (a). If there is a measured disturbance, its current and past values
would be known (not shown).

Figure 1-2 (b) shows the controller’s previous moves, uy 41, .-, Uk.1, as filled
circles. As is usually the case, a zero-order hold receives each move from the
controller and holds it until the next sampling instant, causing the step-wise
variations shown in Figure 1-2 (b).

To calculate its next move, uy the controller operates in two phases:

1 Estimation. In order to make an intelligent move, the controller needs to
know the current state. This includes the true value of the controlled
variable, ¥, , and any internal variables that influence the future trend,
Yp 415+ Yp + p- Lo accomplish this, the controller uses all past and current
measurements and the models ©« >y, d >y, w >3y, and z—>y. For
details, see “Prediction” on page 2-13 and “State Estimation” on page 2-9.

2 Optimization. Values of setpoints, measured disturbances, and constraints
are specified over a finite horizon of future sampling instants, k+1, k+2, ...,
k+P, where P (a finite integer = 1) is the prediction horizon — see
Figure 1-2 (a). The controller computes M moves ug, up, 1, ... Upipr.1, Where
M (=1, < P) is the control horizon — see Figure 1-2 (b). In the hypothetical
example shown in the figure, P =9 and M = 4. The moves are the solution of
a constrained optimization problem. For details of the formulation, see
Chapter 2, “Optimization Problem”.

In the example, the optimal moves are the four open circles in Figure 1-2 (b),
and the controller predicts that the resulting output values will be the nine
open circles in Figure 1-2 (a). Notice that both are within their constraints,

uminguk+jgumax andyminSyk+iSymaLx‘

When it’s finished calculating, the controller sends move uy to the plant. The
plant operates with this constant input until the next sampling instant, A¢ time
units later. The controller then obtains new measurements and totally revises
its plan. This cycle repeats indefinitely.

Reformulation at each sampling instant is essential for good control. The
predictions made during the optimization stage are imperfect. Periodic
measurement feedback allows the controller to correct for this error and for
unexpected disturbances.
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Prediction and Control Horizons

You might wonder why the controller bothers to optimize over P future
sampling periods and calculate M future moves when it discards all but the
first move in each cycle. Indeed, under certain conditions a controller using P
= M =1 would be identical to one using P = M = . More often, however, the
horizon values have an important impact. Some examples follow:

Constraints. Given sufficiently long horizons, the controller can “see” a
potential constraint and avoid it — or at least minimize its adverse effects.
For example, consider the situation depicted below in which one controller
objective is to keep plant output y below an upper bound y,,,,. The current
sampling instant is k£, and the model predicts the upward trend y;,;. If the
controller were looking P; steps ahead, it wouldn’t be concerned by the
constraint until more time had elapsed. If the prediction horizon were Py, it
would begin to take corrective action immediately.

k E+P, k+Py

Plant delays. Suppose that the plant includes a pure time delay equivalent
to D sampling instants. In other words, the controller’s current move, uj, has
no effect until y;,p, ;. In this situation it is essential that P >> D and M <<
P — D, as this forces the controller to consider the full effect of each move.

For example, suppose D =5, P =7, M = 3, the current time instant is &, and
the three moves to be calculated are uy, uy, 1, and uy,o. Moves uy, u, ; would
have some impact within the prediction horizon, but move u;, 5 would have
none until y;, g, which is outside. Thus, uj, ¢ is indeterminant. Setting P = 8
(or M = 2) would allow a unique value to be determined. It would be better to
increase P even more.

Other nonminimum phase plants. Consider a SISO plant with an
inverse-response, i.e., a plant with a short-term response in one direction,

1-7
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but a longer term response in the opposite direction. The optimization should
focus primarily on the longer-term behavior. Otherwise, the controller would
move in the wrong direction.

Most designers choose P and M such that controller performance is insensitive
to small adjustments in these horizons. Here are typical rules of thumb for a
lag-dominant, stable process:

1 Choose the control interval such that the plant’s open-loop settling time is
approximately 20-30 sampling periods (i.e., the sampling period is
approximately one fifth of the dominant time constant).

2 Choose prediction horizon P to be the number of sampling periods used in
step 1.

3 Use a relatively small control horizon M, e.g., 3-5.

If performance is poor, you should examine other aspects of the optimization
problem and/or check for inaccurate controller predictions.
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MIMO Plants

One advantage of Model Predictive Control Toolbox™ design (relative to
classical multi-loop control) is that it generalizes directly to plants having
multiple inputs and outputs. Moreover, the plant can be non-square, i.e.,
having an unequal number of actuators and outputs. Industrial applications
involving hundreds of actuators and controller outputs have been reported.

The main challenge is to tune the controller to achieve multiple objectives. For
example, if there are several outputs to be controlled, it might be necessary to
prioritize so that the controller provides accurate setpoint tracking for the most
important output, sacrificing others when necessary, e.g., when it encounters
constraints. Model Predictive Control Toolbox features support such
prioritization.

Optimization and Constraints

As discussed in more detail in Chapter 2, “Optimization Problem”, the Model
Predictive Control Toolbox controller solves anoptimization problem much like
the LQG optimal control described in the Control System Toolbox™ product.
The main difference is that the Model Predictive Control Toolbox optimization
problem includes explicit constraints on u and y.

Setpoint Tracking

Consider first a case with no constraints. A primary control objective is to force
the plant outputs to track their setpoints.

Specifically, the controller predicts how much each output will deviate from its
setpoint within the prediction horizon. It multiplies each deviation by the
output’s weight, and computes the weighted sum of squared deviations, S y(k) ,
as follows:

P n, 2
S,y = > % {wyj[rj(k +i)—y;(k+ i)]}
i=1j=1
where % is the current sampling interval, k+i is a future sampling interval
(within the prediction horizon), P is the prediction horizon, n, is the number of
plant outputs, w” is the weight for output j, and [rj(k +1) —yj(k +1)] is the
predicted deviation at future instant &+i.

1-9
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If w » w the controller does its best to track r;, sacrificing r; tracking if
necessary ff = 0, on the other hand, the controller completely ignores
deviations r; yJ

Choosing the weights is a critical step. You will usually need to tune your
controller, varying the weights to achieve the desired behavior.

As an example, consider Figure 1-3, which depicts a type of chemical reactor (a
CSTR). Feed enters continuously with reactant concentration Cy;. A reaction
takes place inside the vessel at temperature T. Product exits continuously, and
contains residual reactant at concentration C, (<Cjy;).

The reaction liberates heat. A coolant having temperature T, flows through
coils immersed in the reactor to remove excess heat.

Ca;

< T Cy

!

Figure 1-3: CSTR Schematic

From the Model Predictive Control Toolbox point for view, 7' and C4 would be
plant outputs, and Cy4; and T, would be inputs. More specifically, C,4; would be
an independent disturbance input, and T, would be a manipulated variable
(actuator).

There is one manipulated variable (the coolant temperature), so it’s impossible
to hold both T" and C4 at setpoints. Controlling 7" would usually be a high
priority. Thus, you might set the output weight for 7' much larger than that for
Cy. In fact, you might set the C4 weight to zero, allowing Cy to float within an
acceptable operating region (to be defined by constraints).

Move Suppression

If the controller focuses exclusively on setpoint tracking, it might choose to
make large manipulated-variable adjustments. These could be impossible to
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achieve. They could also accelerate equipment wear or lead to control system
instability.

Thus, the Model Predictive Controller also monitors a weighted sum of
controller adjustments, calculated according to the following equation:

M ng,

2
Sp) = 3 % {ijuAuj(k+i—1)}

i=1j=1

where M is the control horizon, n,,, is the number of manipulated variables,
Au j(k +1—1) is the predicted adjustment (i.e., move) in Iilanipulated variable
j at future (or current) sampling interval £ +i—1,and w’ " is a weight, which
must be zero or positive. Increasing w’ " forces the controller to make smaller,
more cautious Au j moves. In many cases (but not all) this will have the
following effects:

¢ The controller’s setpoint tracking will degrade.

¢ The controller will be less sensitive to prediction inaccuracies (i.e., more
robust).

Setpoints on Manipulated Variables

In most applications, the controller’s manipulated variables (MVs) should
move freely (within a constrained region) to compensate for disturbances and
stepoint changes. An attempt to hold an MV at a point within the region would
degrade output setpoint tracking.

On the other hand, some plants have more MVs than output setpoints. In such
a plant, if all manipulated variables were allowed to move freely, the MV
values needed to achieve a particular setpoint or to reject a particular
disturbance would be non-unique. Thus, the MVs would drift within the
operating space.

A common approach is to define setpoints for “extra” MVs. These setpoints
usually represent operating conditions that improve safety, economic return,
etc. Model Predictive Control Toolbox design includes an additional term to
accommodate such cases, as follows:

M n,,

S, (k)= > z{w;‘[aj—uj(kn—l)]}

i=1j=1

1-11
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where % is the manipulated variable setpoint (nominal value) for the jth MV,
and wju is the corresponding weight.

Constraints

Constraints may be either hard or soft. A hard constraint must not be violated.
Unfortunately, under some conditions a constraint violation might be
unavoidable (e.g., an unexpected, large disturbance), and a realistic controller
must allow for this.

Model Predictive Control Toolbox software does so by softening each constraint,
making a violation mathematically acceptable, though discouraged. The
designer may specify the degree of softness in each case, making selected
constraints less likely to be violated than others. See for the mathematical
details.

Briefly, you specify a tolerance band for each constraint. If the tolerance band
is zero, the constraint is hard (no violation allowed). Increasing the tolerance
band softens the constraint.

The tolerance band is not a limit on the constraint violation, however. (If it
were, you would still have a hard constraint.) You need to view it relative to
other constraints.

For example, suppose you have two constraints, one on a temperature and the
other on a flow rate. You specify a tolerance band of 2 degrees on the
temperature constraint, and 20 kg/s on the flow rate constraint. The Model
Predictive Controller assumes that violations of these magnitudes are of equal
concern, and should be handled accordingly.

Estimating States from Measured Data

At the beginning of each sampling instant the controller estimates the current
plant state. Accurate knowledge of the state improves prediction accuracy,
which, in turn, improves controller performance.

If all plant states are measured, the state estimation problem is relatively
simple and requires consideration of measurement noise effects only.
Unfortunately, the internal workings of a typical plant are unmeasured, and
the controller must estimate their current values from the available
measurements. It also estimate the values of any sustained, unmeasured
disturbances.
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Model Predictive Control Toolbox software provides a default state estimation
strategy, which the designer may customize. For details, see “State
Estimation” on page 2-9.

Blocking

In Figure 1-2 (b), M = 4 and P=9, and the controller is optimizing the first M
moves of the prediction horizon, after which the manipulated variable remains
constant for the remaining P — M = 5 sampling instants.

Figure 1-4 shows an alternative blocked strategy — again with 4 planned moves
— in which the first occurs at sampling instant &, the next at £+2, the next at
k+4, and the final at £+6. A block is one or more successive sampling periods
during which the manipulated variable is constant. The block durations are the
number of sampling periods in each block. In Figure 1-4 the block durations are
2, 2, 2, and 3. (Their sum must equal P.)

U b e e e e L e e e e e ]
max
Sermnnn Ot
Onmmmus
o Past Moves
o Planned Moves
u.
mhFr-———t+——— - — - — - — —
| | | | | | | |

| | |
4 -3 -2 -1 Kk +1 +2 +3 +4 +5 +6 +7 +8 +9
Sampling Instant

Figure 1-4: Blocking Example with Four Moves
As for the default (unblocked) mode, only the current move, uy, actually goes to

the plant. Thus, as shown in Figure 1-4, the controller has made a plant
adjustment at each sampling instant.
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So why use blocking? When P >> M (as is generally recommended), and all M
moves are at the beginning of the horizon, the moves tend to be larger (because
all but the final move last just one sampling period). Blocking often leads to
smoother adjustments, all other things being equal.

See the subsequent case study examples and the literature for more discussion
and MIMO design guidelines.
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Problem Setup

Prediction Model (p. 2-2)

Optimization Problem (p. 2-5)

State Estimation (p. 2-9)
QP Matrices (p. 2-13)
Model Predictive Control Computation

(p. 2-19)
Using Identified Models (p. 2-20)

A discussion of the prediction model used by the
controller to estimate hypothetical future outputs over
the prediction horizon.

A mathematical description of the cost function used by
the controller to optimize control moves over the control
horizon.

A state-space model is used to represent the combination
of the plant model, noise model, and disturbance model.

A brief discussion of the mathematical structure of
matrices associated with the optimization problem.

A discussion of the algorithms used for constrained and
unconstrained model predictive control.

A description of the way identified models are handled.
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Prediction Model

The linear model used in Model Predictive Control Toolbox™ software for
prediction and optimization is depicted in Figure 2-1.

MVs (Manipulated Variables) U(k) {Unmeasured Outputs) )
Yu (K) CVs (Controlled
MDs (Measured Disturbances) v(k) - > . Plant w,
" " y(k)
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Figure 2-1: Model Used for Optimization

The model consists of:

¢ A model of the plant to be controlled, whose inputs are the manipulated
variables, the measured disturbances, and the unmeasured disturbances

¢ A model generating the unmeasured disturbances

Note When defining a model predictive controller, you must specify a plant
model. You do not need to specify a model generating the disturbances, as the
controller setup assumes by default that unmeasured disturbances are
generated by integrators driven by white noise (see “Output Disturbance
Model” on page 2-10 and setindist on page 6-38).

The model of the plant is a linear time-invariant system described by the
equations

x(k+1) = Ax(k) + B, u(k) + B,v(k) + B d(k)
y,,(k) = C, x(k)+D, v(k)+D,, d(k)
vy, (k) =C,x(k)+D,  v(k)+D,,d(k)+D, u(k)



Prediction Model

where x(%) is the n,-dimensional state vector of the plant, u(k) is the
n,-dimensional vector of manipulated variables (MV), i.e., the command
inputs, v(k) is the n,-dimensional vector of measured disturbances (MD), d(k)
is the n -dimensional vector of unmeasured disturbances (UD) entering the
plant, y, (k) is the vector of measured outputs (MO), and y, (%) is the vector of
unmeasured outputs (UO). The overall n,-dimensional output vector y(k)
collects y,,(k) and y (k).

Model Predictive Control Toolbox software accepts both plant models specified
as LTI objects, and models obtained from input/output data using System
Identification Toolbox (IDMODEL objects), see Using Identified Models

(p. 2-20).

In the above equations d(k) collects both state disturbances (Bqd#0) and output
disturbances (Dd+0).

Note A valid plant model for Model Predictive Control Toolbox software
cannot have direct feedthrough of manipulated variables u(k) on the
measured output vector ym(k).

The unmeasured disturbance d(k) is modeled as the output of the linear time
invariant system:

xy(k+1) = Ax (k) +Bn (k) (2-1)

d(k) = Cxy(k)+Dny(k) (2-2)

The system described by the above equations is driven by the random Gaussian
noise ny4(k), having zero mean and unit covariance matrix. For instance, a
step-like unmeasured disturbance is modeled as the output of an integrator.
Input disturbance models as in the equations above can be manipulated by
using the methods getindist on page 6-14 and setindist on page 6-38.

Note If continuous-time models are supplied, they are internally sampled
with the controller’s sampling time.
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Offsets

In many practical applications, the matrices A, B, C, D of the model
representing the process to control are obtained by linearizing a nonlinear
dynamical system, such as

x' = fx,u,v,d)
y = h(x,u,v,d),

at some nominal value x=x, u=u, v=v, d=d,. In these equations x' denotes
either the time derivative (continuous time model) or the successor x(k+1)
(discrete time model). As an example, x, u, Vg, dy may be obtained by using
TRIM on a Simulink® model describing the nonlinear dynamical equations, and
A, B, C, D by using LINMOD. The linearized model has the form:

x 5f(x0a Ug, Vg, d()) + fo(x()a Uy, Vs d())(x _x()) + Vuf(x()a Ug, Vg, d())(u _u())
+ va(x()a Ug, Vs do)(v _Uo) + Vdf(x()a Ug, Vo, do)(d _do)

y=h(xg ug vy dg) + V, h(xg ug vg, dg)(x—xy) +V,h(xg, ug, v, do)(u —ug)
+V h(xg, ug, vy, dg)(V=vg) + Vzh(xg, ug vy do)(d —d)

The matrices A, B, C, D of the model are readily obtained from the Jacobian
matrices appearing in the equations above.

The linearized dynamics are affected by the constant terms F=f(x, ug, vg, dg)
and H=h(x, ug, vg, dg)- For this reason the model predictive control algorithm
internally adds a measured disturbance v=1, so that F and H can be embedded
into B, and D, respectively, as additional columns.

Note Nonzero offset values d for unmeasured disturbances, while relevant
for obtaining the linearized model matrices, are not relevant for the model
predictive control problem setup. In fact, only d-d can be estimated from
output measurements.




Optimization Problem

Optimization Problem

Standard Form

Assume that the estimates of x(k), x4(k) are available at time % (for state
estimation, see “State Estimation” on page 2-9). The model predictive control
action at time % is obtained by solving the optimization problem

(2-3)

. 2
W), 1 0k * i+ Lk —ri(k+i+ 1)

min p_l[ L
Au(k|k) Au(m—1+k|k) .go o=

INE 2
ki) = (ki) j+pga }

1

+ Z ‘w ‘Au (k+z|k)‘
Jj=1 j=1

where the subscript “();” denotes the j-th component of a vector, “(k+i | k)”
denotes the value predicted for time %£+i based on the information available at
time k; r(k) is the current sample of the output reference, subject to

(i)-¢&V; N<ujk+ilk)<u; () +eV)", ()

Jmm mm(L

(1) =V, () S Ak + 1)< Ay (D) V(D)

J min
Yimin@ =V g Sy +i+1|k) <y, (i) +eV],, (@)
Au(k+h|k)= 0,h=m,..,p-1
>0

with respect to the sequence of input increments {Au(% | ),...,Au(m-1+k | k)} and
to the slack variable ¢, and by setting u(k)=u(k-1)+Au(k | k)*, where Au(k | k)* is
the first element of the optimal sequence.
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Note Although only the measured output vector y,,,(%) is fed back to the
model predictive controller, r(k) is a reference for all the outputs (measured
and unmeasured).

When the reference r is not known in advance, the current reference (k) is used
over the whole prediction horizon, namely r(k+i+1)=r(k) in Equation 2-3. In
model predictive control the exploitation of future references is referred to as
anticipative action (or look-ahead or preview). A similar anticipative action can
be performed with respect to measured disturbances v(k), namely v(k+i)=v(k) if
the measured disturbance is not known in advance (e.g. is coming from a
Simulink® block) or v(k+i) is obtained from the workspace. In the prediction,
d(k+1) is instead obtained by setting n;(k+i)=0 in Figure 2-1 and Figure 2-2.

wh, > Wi j, w”; j, are nonnegative weights for the corresponding variable. The
smaller w, the less important is the behavior of the corresponding variable to

the overall performance index.

Ui mins Wi,maxs AU mins AU maxs ¥, mins ¥j,max @r€ lower/upper bounds on the
corresponding variables. In Equation 2-4, the constraints on u, Au, and y are
relaxed by introducing the slack variable ¢> 0. The weight pe on the slack
variable ¢ penalizes the violation of the constraints. The larger pe with respect
toinput and output weights, the more the constraint violation is penalized. The
Equal Concern for the Relaxation (ECR) vectors V%, V¥ 00 VA% o VDY
W ine VW max have nonnegative entries which represent the concern for
relaxing the corresponding constraint; the larger V, the softer the constraint.
V=0 means that the constraint is a hard one that cannot be violated. By
default, all input constraints are hard (V¥ ;,=V* .=V min=V"*max=0) and
all output constraints are soft (V' ;,=V”,.x=1). As hard output constraints
may cause infeasibility of the optimization problem (for instance, because of
unpredicted disturbances, model mismatch, or just because of numerical round
off), a warning message is produced if V7 ;, V' .« are smaller than a given
small value and automatically adjusted at that value. By default,

5 A u
p, = 10 max{wi’?,wi,j, w“zvj} (2-4)

Note that also ECRs can be time varying.



Optimization Problem

Vector ugarget(k+1) is a setpoint for the input vector. One typically uses t;,get
if the number of inputs is greater than the number of outputs, as a sort of
lower-priority setpoint.

As mentioned earlier, only Au(k | k) is actually used to compute u(k). The
remaining samples A u(k+i | k) are discarded, and a new optimization problem
based on y,,(k+1) is solved at the next sampling step 2+1.

The algorithm implemented in the Model Predictive Control Toolbox™
software uses different procedures depending on the presence of constraints. If
all the bounds are infinite, then the slack variable ¢ is removed, and the
problem in Equation 2-3 and Equation 2-4 is solved analytically. Otherwise a
Quadratic Programming (QP) solver is used. The matrices associated with the
quadratic optimization problem are described in “QP Matrices” on page 2-13.

Since output constraints are always soft, the QP problem is never infeasible. If
for numerical reasons the QP problem becomes infeasible, the second sample
from the previous optimal sequence is applied, i.e. u(k)=u(k-1)+A u(k | k-1).

Note To improve numerical robustness for constrained model predictive
control problems the default value Au; ,,;,, for unbounded input rates is -10
and the maximum allowed lower bound is -1e5. The default value for
unconstrained problems is minus infinity.

Alternative Cost Function

You have the option to use the following quadratic objective instead of the
standard one (Equation 2-3):

p-1
J(Aue) = Y [y(k+i+1k)—r(k+i+ D] Qy(k+i+1]k) (2-5)
1=0

—r(k+i+1)]+Au(k+ i|k)TRAuAu(k +ilk)

+ [u(k + Z|k) _utarget(k + i)]TRu[u(k + Z|k) _utarget(k + l)] + p£82

2-7
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where @ is an n, by n, matrix, and R,, and R, are n, by n, matrices, all
positive semi-definite. Equation 2-5 allows non-zero off-diagonal weights but
uses the same weights at each step in the prediction horizon.

Equatlon 2-3 and Equation 2-5 are equivalent when the weights w J , lA? ,

and w . are constant forall i = 1,...,p, and When the gnatnces Q,R Ay and
R, are élagonal with the squares of the weights w’ ., w' ", and w

i.j? g ij
respectlvely as their diagonal elements.

Note When using the alternative cost function you must define the controller
using MATLAB® commands. The MPC design tool does not provide this
option.




State Estimation

State Estimation

As the states x(k), x4(k) are not directly measurable, predictions are obtained
from a state estimator. In order to provide more flexibility, the estimator is
based on the model depicted in Figure 2-2.

UOs.

MVs (Manipulated Variables) U(K) (Unmeasured Outputs)
> -
CVs (Controlled Yu (R)
MDs (Measured Disturbances) V(k) Plant Variables) +' O >
K
model o
natk) Unmeasured d(k) _
—| disturbance |———>
White noise odel | D
White noise HUrLE (Unmeasured
innovations

Disturbances)

Xq1 (k) x(k)

Output
———| disturbance

Wuwhite noise

S model
innovations
Xaz(k)
h MOs
Nm(k) Measurement + + (Measured Outputs)
- noise —
White noise model m(k) Y (k)
innovations

Xm (k)
Figure 2-2: Model Used for State Estimation

Measurement Noise Model

We assume that the measured output vector y,,(k) is corrupted by a
measurement noise m(k). The measurement noise m(¢) is the output of the
linear time-invariant system

x, (k+1) = Ax, (k) +Bn, (k)

m(k) = Cx, (k)+Dn, (k)

The system described by these equations is driven by the random Gaussian
noise n,,(k), having zero mean and unit covariance matrix.

2-9
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Note The objective of the model predictive controller is to bring y,(k) and
[y (R)-m(k)] as close as possible to the reference vector (). For this reason,
the measurement noise model producing m(k) is not needed in the prediction
model used for optimization described in “Prediction Model” on page 2-2.

Output Disturbance Model

In order to guarantee asymptotic rejection of output disturbances, the overall
model is augmented by an output disturbance model. By default, in order to
reject constant disturbances due for instance to gain nonlinearities, the output
disturbance model is a collection of integrators driven by white noise on
measured outputs. Output integrators are added according to the following
rule:

1 Measured outputs are ordered by decreasing output weight (in case of
time-varying weights, the sum of the absolute values over time is considered
for each output channel, and in case of equal output weight the order within
the output vector is followed).

2 By following such order, an output integrator is added per measured
outputs, unless there is a violation of observability or the user forces it
(through the OutputvVariables.Integrators property described in
“OutputVariables” on page 8-5).

An arbitrary output disturbance model can be specified through the function
setoutdist on page 6-43. See also setoutdist for ways to remove the default
output integrators.

State Observer

The state observer is designed to provide estimates of x(k), x;(k), x,,,(k), where
x(k) is the state of the plant model, x;(%) is the overall state of the input and
output disturbance model, x,,(%) is the state of the measurement noise model.
The estimates are computed from the measured output ym(k) by the linear
state observer



State Estimation

x(k|k) x(k|k—1)
Zy(k|R)| = |2g(klk=1)| + M(y,,(k)—,,(k))
x,, (k|k) x, (k|k—1)

2(k+1|k) Ax(k|k) +B,u(k) + B,u(k) + B Cx (k|k)
xy(k+1|k)| = Axy(k|k)
x, (k+1|k) Afcm(klk)

9, (k) = C_%(k|k—1)+D,, v(k)+Dy, Cx,(k|k—1)+Cx, (k|k-1)

where m denotes the rows of C,D corresponding to measured outputs.

To prevent numerical difficulties in the absence of unmeasured disturbances,
the gain M is designed using Kalman filtering techniques (see kalman in the
Control System Toolbox™ documentation) on the extended model

_ — nd(k)
x(k+1)| |AB,CoO|lxk)| [B, B, ByD O B, By~ 1)
alk D)= 1o & of|%a®)|* o uBI* o B F 00 0] " )
n
nl)
nd(k)
~ L x(k) a . nm(k)
Y (k) = [cm D,,,C CJ (k)| + Dy v (k) + |:DmD 0 0} L (2-6)
% () nEk;
nU

where n, (k) and n,(k) are additional unmeasured white noise disturbances
having unit covariance matrix and zero mean, that are added on the vector of
manipulated variables and the vector of measured disturbances, respectively,
to ease the solvability of the Kalman filter design.

2-11



2 Model Prediciive Control Problem Setup

2-12

Note The overall state-space realization of the combination of plant and
disturbance models must be observable for the state estimation design to
succeed. Model Predictive Control Toolbox™ software first checks for
observability of the plant, provided that this is given in state-space form. After
all models have been converted to discrete-time, delay-free, state-space form
and combined together, observability of the overall extended model is checked
(see setestim and “Construction and Initialization” on page 8-13).

Note also that observability is only checked numerically. Hence, for large
models of badly conditioned system matrices, unobservability may be reported
by the toolbox even if the system is observable.

See also getestim on page 6-11 and setestim on page 6-36 for details on the
methods that you can use to access and modify properties of the state
estimator.



QP Matrices

QP Matrices

This section describes the matrices associated with the model predictive
control optimization problem described in “Optimization Problem” on page 2-5.
¢ “Prediction” on page 2-13

¢ “Optimization Variables” on page 2-14

® “Cost Function” on page 2-16

® “Constraints” on page 2-17

Prediction

Assume for simplicity that the disturbance model in Equation 2-1 and
Equation 2-2 is a unit gain (i.e., d(k)=nd(k) is a white Gaussian noise). For
simplicity, denote by

,B, < B,
0

X ABd(_j

0 A

X LA«

,B, < B,
0

,Bd%{BdD,C%[CDdC]

Then, the prediction model given by
x(k+1) = Ax(k) + B, u(k) + B, v(k) + B n (k)

y(k) = Cx(k)+D v(k)+Dyn (k).

Consider for simplicity the prediction of the future trajectories of the model
performed at time £=0. We set n4(i)=0 for all prediction instants ¢, and obtain

i—-1

) ) h
y(i]0) = C{Alx(0)+ > A"l[Bu[u(—l)+ > Au(i)j +va(h)ﬂ+va(i)
h=0 j=0

which gives
¥(1) Au(0) v(0)
= Sxx(0)+sulu(_1)+su +Hv
y(@) Au(p-1) v(p)
where

2-13
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] CB,
CA2 CB,+CAB,
S, = |CA | ewf™ ™8 | = e |
p-1 N
CAP z CA"B,
Lh=0 J
| cB, 0 ]
CB,+CAB, CB,
S — mpnyxpnu
" ..
p-1 5 p-2 5
S ca'B, ¥ ca'B, .. cB,
Lh=0 h=0 |
CB, D, 0
4 - | caB,  cB, D, . 0| pnxoein,

Optimization Variables
Let m be the number of free control moves and denote by z= [z(; ...; 2;,.1]. Then,

Au(0) 20
=Jul .. (2-7)

Au(p-1) Z, 1
where J); depends on the choice of blocking moves. Together with the slack
variable g, vectors z, ..., 2,1 constitute the free optimization variables of the

optimization problem (in case of systems with a single manipulated variables,
2, ..., 2.1 @re scalars).



QP Matrices

(k)

Au(k)

'
%]

0 1 2 3 4 5 6 7
Prediction time &

Figure 2-3: Blocking Moves: Inputs and Input lincrements for moves=[2 3 2]

Consider for instance the blocking moves depicted in Figure 2-3, which
corresponds to the choice moves=[2 3 2], or, equivalently,

u(0)=u(1), u(2)=u(3)=u4), u(G)=u(6), A u(0)=20, A u(2)=21, A u(5)=22, A u(1)=A
u(3)=A u(4)=A u(6)=0.

Then, the corresponding matrix Jy; is

100
000
010
Jy=1000
000
001
1000

2-15
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Cost Function

Standard Form
The function to be optimized is

T
u(0) utarget(o) 9 u(0) utarget(o)
J(z,¢) = U Wou + U
u(p—1) utarget(p -1) u(p—1) utarget(p -1)
Au(0) 9 Au(0)
+ e WAu e
Au(p-1) Au(p-1)
T
| [l L (o] o],
+ U R I Wy U TR +p88
y(1)] [r(p) y(1)] [r(p)

where

_qe u u u u u u
W, = dlag(wo’ LW, 9 W s s W1 15 Wop 1,95 -5 wp_l’nu)

1 Au Au Au Au Au Au 2-8
W,, = dlag(wo, LWQ 9 s W s s Wy Z 1 15 Wop 1 95 -os wp_l’nu) (2-8)

— 13 y y y y y y
Wy = dlag(wl, D WY, 20 oo W s oo Wy 15 W s oy Wy ny)

Finally, after substituting u(k), Au(k), y(k), J(z) can be rewritten as

T
- r(1) 0(0) .
J(z,e) = pe”+2' K, ,2+2|| | K.+| |K,+tu(-1) K, (2-9)

r

r(p) v(p)

utarget(o) T
+ K,, +x(0) K|z + constant

utarget(p -1)



QP Matrices

Note In order to keep the QP problem always strictly convex, if the condition
number of the Hessian matrix K,y is larger than 1012, the quantity
10*sqrt(eps) is added on each diagonal term. This may only occur when all
input rates are not weighted (W2“=0) (see “Weights” on page 8-7).

Alternative Cost Function

If the alternative cost function shown in Equation 2-5 is being used,
Equation 2-8 is replaced by the following:

W, = blkdiag(R,,, ..., R))
w,, = blkdiag(R,,.....R,,) (2-10)
Wy = blkdiag(@, ..., @)
where the block-diagonal matrices repeat p times, i.e., once for each step in the
prediction horizon.

You also have the option to use a combination of the standard and alternative
forms. See “Weights” on page 8-7 for more details.

Constraints

Let us now consider the limits on inputs, input increments, and outputs along
with the constraint &> 0.

2-17
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Ymin(D) =€V min(1) Ymax(D) + eV max(1)
y(1)
Ymin@®) =€V min(p) Ymazx®@) + eV’ max(p)
" y(@)
Upin(0) =€V min(0) u(0) Upar(0)+ eV max(0)
< <

A Au(0) R

Aulp-1)

At =1) =V min(p = 1) Aty 0= 1)+ 6V mas(p — 1)

Note Upper and lower bounds that are not finite are removed, as well as the
input and input-increment bounds over blocked moves.

Similarly to what was done for the cost function, we can substitute u(k), Au(k),
y(k), and obtain

v(0)
Mz+Me<M; +M, |  |+M,u(-1)+Mx(0) (2-11)
v(p)

where matrices MM, M};,,M,,,M,,,M, are obtained from the upper and lower
bounds and ECR values.

The QP problem matrices are constructed by function mpc_buildmat.
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Model Predictive Control Computation

This section describes how the model predictive control optimization problem
is solved at each time step £ (in mpcmove, mpc_sfun.mex, and

mpcloop_engine.mex) by using the matrices built at initialization described in
“QP Matrices” on page 2-13.

Unconstrained MPC

The optimal solution is computed analytically

T T
L v(0) r Utarget(0) r
2* = K “au Kr+ Kv+u(_1) Ku+ . Kut+x(0) Kx

r(p) v(p) Uiarget® 1)

and the model predictive controller sets Au(k)=z*, u(k)=u(k-1)+Au(k).

Constrained Model Predictive Control

The optimal solution z*, * is computed by solving the quadratic program
described in Equation 2-9 and Equation 2-11, using the QP solver coded in the
gpsolver.mex function (see qpdantz for more details).

2-19
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Using Identified Models

Model Predictive Control Toolbox™ software is able to handle plant models
generated by System Identification Toolbox™ software from input/output
measurements.

Model Predictive Control Toolbox software labels control input signals as
'Manipulated', measured input disturbances as 'Measured', and unmeasured
input disturbances as 'Unmeasured'. On the other hand, System Identification
Toolbox software has a different naming rule, as it calls 'Measured' the inputs
that are measurable quantities, and 'Noise' those that are not.

When you specify an identified model in the Model Predictive Control
constructor as the plant model, Model Predictive Control Toolbox software
treats 'Noise' signals as ‘Unmeasured’ input signals, and 'Measured' signals as
'Manipulated' signals, assuming that all measured inputs are also
manipulated variables. You can later change later signal types, for instance to
specify that some measured inputs are measured disturbances, rather than
manipulated variables (see setname).

Model Predictive Control Toolbox software internally converts the identified
model you have provided as a plant model into the classical (A,B,C,D)
state-space format. The columns of the B matrix originally related to 'Noise'
channels are treated as the effect of unmeasured input disturbances on the
state of the plant. On the other hand, the columns of the D matrix related to
'Noise' channels as treated as the effect of measurement noise superimposed on
the output signal. Accordingly, Model Predictive Control Toolbox software
treats as the plant model the state-space model obtained from (A,B,C,D) by
zeroing the columns of D related to 'Noise' channels. Those columns are instead
used as a static noise model, or cascaded to an existing noise model if you have
specified one. A unit static gain is assumed as the disturbance model, unless
you have specified another one.



Case-Study Examples

Introduction (p. 3-2)

Servomechanism Controller (p. 3-3)

Paper Machine Process Control
(p. 3-27)

Bumpless Transfer in MPC (p. 3-39)

Summary of the case-study examples.

Model Predictive Control Toolbox™ design of a
servomechanism. Uses the MPCTOOL GUI and

commands.

Application to a paper machine headbox. Involves
multiple signals. Illustrates use of the MPCTOOL GUI
and Simulink®.

Demonstration of bumpless transfer between manual and
automatic system operation using the Simulink MPC
block.
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Introduction

This chapter describes some typical model predictive control applications.
Familiarity with LTI models (from the Control System Toolbox™ product) and
Simulink® block diagrams will make the examples easier to understand, but
you can skip the modeling details if you want.

The first example designs a servomechanism controller. The specifications
require a fast servo response despite constraints on a plant input and a plant
output.

The second example controls a paper machine headbox. The process is
nonlinear, and has three outputs, two manipulated inputs, and two
disturbance inputs, one of which is measured for feedforward control.

The third example demonstrates Model Predictive Control Toolbox™ bumpless
transfer between manual and automatic operation.



Servomechanism Controller

Servomechanism Controller

Figure 3-1: Position Servomechanism Schematic

System Model

A position servomechanism consists of a DC motor, gearbox, elastic shaft, and
a load (see Figure 3-1). The differential equations representing this system are

ke(eL GM) 3

Oy = ——
L
JL

METATR ) TTa, e T

where V is the applied voltage, T is the torque acting on the load, w; = 87, is
the load’s angular velocity, w,, = s is the motor shaft’s angular velocity, and
the other symbols represent constant parameters (see Table 3-1 for more
information on these).

T

If we define the state variables as x [9 ®r 0., ® ] , we can convert the
L YL "M M

above model to an LTI state-space fp orm:
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0 1 0 0 o
ko Br o Ry 0 0
J Jp pdg 0
=10 0 0 1 0|V
k k kZ/R .
0 0 0 BM"’ T/ RJM
Sy 02y, Iy -

Table 3-1: Parameters Used in the Servomechanism Model

Symbol Value (SI Definition
Units)
kg 1280.2 Torsional rigidity
kp 10 Motor constant
Ty 0.5 Motor inertia
Jr 50, Load inertia
p 20 Gear ratio
Bas 0.1 Motor viscous friction coefficient
Br, 25 Load viscous friction coefficient
R 20 Armature resistance
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Control Objectives and Constraints

The controller must set the load’s angular position, 0; , at a desired value by
adjusting the applied voltage, V. The only measurement available for feedback
is 07 .

L

The elastic shaft has a finite shear strength, so the torque, 7', must stay within
specified limits

|T1<785 Nm
Also, the applied voltage must stay within the range
V] <220 V

From an input/output viewpoint, the plant has a single input, V, which is
manipulated by the controller. It has two outputs, one measured and fed back
to the controller, 6; , and one unmeasured, 7'

Defining the Plant Model

The first step in a design is to define the plant model. The following commands
are from the MPC demos file mpcmotormodel.m, which you can run instead of
entering the commands manually.

% DC-motor with elastic shaft

o°

%sParameters (MKS)

Lshaft=1.0; %Shaft length

dshaft=0.02; %Shaft diameter

shaftrho=7850; %Shaft specific weight (Carbon steel)
G=81500*1¢e6; %Modulus of rigidity

tauam=50*1e6; %Shear strength

Mmotor=100; %Rotor mass

Rmotor=.1; %Rotor radius
Jdmotor=.5*Mmotor*Rmotor~2; %Rotor axial moment of inertia
Bmotor=0.1; %Rotor viscous friction coefficient (A CASO)
R=20; %Resistance of armature

Kt=10; %Motor constant

gear=20; %Gear ratio
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Jload=50*Jdmotor; %Load inertia

Bload=25; %Load viscous friction coefficient
Ip=pi/32*dshaft"~4; %Polar momentum of shaft
(circular) section

Kth=G*Ip/Lshaft; %sTorsional rigidity
(Torque/angle)

Vshaft=pi*(dshaft~2)/4*Lshaft; %Shaft volume
Mshaft=shaftrho*Vshaft; %Shaft mass
Jshaft=Mshaft*.5* (dshaft~2/4); %sShaft moment of inertia
JM=dmotor;

JL=Jload+Jshaft;
Vmax=tauam*pi*dshaft~3/16; SMaximum admissible torque
Vmin=-Vmax;

%sInput/State/Output continuous time form

AA=[0 1 0 0;
-Kth/JL -Bload/JL Kth/ (gear*JL) 0;
0 0 0 1;
Kth/ (JM*gear) 0O -Kth/ (JM*gear~2)

- (Bmotor+Kt~2/R) /JM];

BB=[0;0;0;Kt/(R*JM)];
Hyd=[1 0 0 0];

Hvd=[Kth 0 -Kth/gear 0];
Dyd=0;

Dvd=0;

% Define the LTI state-space model
sys=ss(AA,BB, [Hyd;Hvd], [Dyd;Dvd]);

Controller Design Using MPCTOOL

The servomechanism model is linear, so you can use the Model Predictive
Control Toolbox™ design tool (mpctool) to configure a controller and test it.
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Note To follow this example on your own system, first create the
servomechanism model as explained in “Servomechanism Controller” on
page 3-3. This defines the variable sys in your MATLAB® workspace.

Opening MPCTOOL and Importing a Model
To begin, open the design tool by typing the following at the MATLAB prompt:

mpctool

Once the design tool has appeared, click the Import Plant button. The Plant
Model Importer dialog box appears (see Figure 3-2).

By default, the Import from option buttons are set to import from the
MATLAB workspace, and the box at the upper right lists all LTI models
defined there. In Figure 3-2, sys is the only available model, and it is selected.
The Properties area lists the selected model’s key attributes.

«): Plant Model Importer i im] 5
Impart fram: ltems in your workspace:
b Variable Name | Size | Bytes | Class |
 MAT-file 8 sys 21 3188  ss
AT-f R marme:
Erawase .. |
Froperties
Model name = sys o
Type = State space (z=5)
Mumber of inputs = 1
Mumber of outputs =2
Order= 4
Sampling: Continuous
Input namegs):
(none)
Input groupgs):
(none)
Clutput nameiz): LI
Impart ta: IMPCdesign Vl Impart | Cloze | Help |

Figure 3-2: Import Dialog Box with the Servomechanism Model Selected
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Make sure your servomechanism model, sys, is selected. Then click the Import
button. You won’t be importing more models, so close the import dialog box.

Meanwhile, the model has loaded, and tables now appear in the design tool’s
main window (see Figure 3-3). Note the diagram at the top ennumerates the
model’s input and output signals.

) control and Estimation Tools Manager 10l =|
File MPC Help
ok = @
4_:\ Wiorkspace - MPC structure overview
= Mrcdesion
- gl Plant models
L[ controllers 0 Measured 1
o] mpc i
=] [E [Sc]enarios 1 :II:STU.I’bEllnCEdS Inputs Unmeasured Cutnuts
H Setpoints anipulate pu
b Scenarial MPC i —a ™ Plant S
b (reference] variables 1 2
0 Unmeasured Measured
disturbances 1
Impart Plant ... Impaort Cortraller ... | Help |
~ Input signal properties
Marne Type Description Units Marninal
i Manipulated Applied Yoltage v 0.0
~ Qutput signal properies
Marne Type Description Units Marninal
Thetal Measured Angular position Radians 0.0
T Lnmeasured Torgue applied to load m 0.0

Figure 3-3: Design Tool After Importing the Plant Model and Specifying Signal Properties

Specifying Signal Properties

It’s essential to specify signal types before going on. By default, the design tool
assumes all plant inputs are manipulated, which is correct in this case. But it
also assumes all outputs are measured, which is not. Specify that the second
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output is unmeasured by clicking on the appropriate table cell and selecting
the Unmeasured option.

You also have the option to change the default signal names (In1, Out1, Out2)
to something more meaningful (e.g., V, Thetal, T), enter descriptive
information in the blank Description and Units columns, and specify a
nominal initial value for each signal (the default is zero).

After you've entered all your changes, you should see a view similar to
Figure 3-3. Notice that the upper graphic designates one output as measured,
the other as unmeasured.

Navigation Using the Tree View

Now consider the design tool’s left-hand frame. This ¢ree is an ordered
arrangement of nodes. Selecting (clicking) a node causes the corresponding
view to appear in the right-hand frame. When the design tool starts, it creates
a root node named MPCdesign and selects it, as in Figure 3-3.

The Plant models node is next in the hierarchy. Click on it to list the plant
models being used in your design. (Each model name is editable.) The middle
section displays the selected model’s properties. There is also a space to enter
notes describing the model’s special features. Buttons allow you to import a
new model or delete one you no longer need.

The next node is Controllers. You might see a + sign to its left, indicating that
it contains subnodes. If so, click on the + sign to expand the tree (as shown in
Figure 3-3). All the controllers in your design will appear here. By default, you
have one: MPC1. In general, you might opt to design and test several
alternatives.

Select Controllers to see a list of all controllers, similar to the Plant models
view. The table columns show important controller settings: the plant model
being used, the controller sampling period, and the prediction and control
horizons. All are editable. For now, leave them at their default values.

The buttons on the Controllers view allow you to:
¢ Import a controller designed previously and stored either in your workspace
or in a MAT-file.

¢ Export the selected controller to your workspace.

e Create a New controller, which will be initialized to the Model Predictive
Control Toolbox defaults.
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E)control and Estimation Tools Manager 10l =|

File MPC Help

® Copy the selected controller to create a duplicate that you can modify.

¢ Delete the selected controller.

Specifying Controller Properties

Select the MPC1 subnode. The main pane should change to the controller
design view shown in Figure 3-4.

ok = @
ﬂ Workspace Madel and Horizons | Constraints | Weight Tuning | Estimation (Advanced)l
=0 mrCdesion
- Tl Plant models
E| Controllers
o] mee
= E:Qscena”“ Flant model: | sys -
B P;_" Scenariol
- Horizons
Control interval (time units): ID.1
Prediction horizon (intervals): |1 u]
Control harizon (intervalz): |2
r Blocking
~ Blocking
Elocking allocation swwithin prediction horizan: I Beginning 'l
Murnber of moves computed per steq: |3
Custarn move allocstion vectar: I[ 23458]

Help |

Figure 3-4: Controller Design View, Models and Horizons Pane
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If the selected Prediction model is continuous-time, as in this example, the
Control interval (sampling period) defaults to 1. You need to change this to an
application-appropriate value. Set it to 0.1 seconds (as shown in Figure 3-4).
Leave the other values at their defaults for now.
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) control and Estimation Tools Manager

=lal x|
File MPC Help
ok = @

ﬂ Warkspace
=0 mrCdesion ; : :

£ 88 Plant models ~ Constraints on manipulated variahle
rﬁ Cortrollers

Model and Hotizons  Sonstraints | Wigight Tuning | Estimation (Advanced)l

Marne Units Minirnum Maimurm Maix Doven Rate Maix Up Rate

] e 0 0 220 220
E[E Scenatios

o P;_" Scenariol

- Constraints on output variable

Mame Units
Thetal Radians
T M -75.5 755

Minimurm hdadimum

Constraint Softening | Help |

Figure 3-5: Controller Design View, Constraints Pane

Specifying Constraints

Next, click the Constraints tab. The view shown in Figure 3-5 appears. Enter

the appropriate constraint values. Leaving a field blank implies that there is
no constraint.

In general, it’s good practice to include all known manipulated variable
constraints, but it’s unwise to enter constraints on outputs unless they are an
essential aspect of your application. The limit on applied torque is such a
constraint, as are the limits on applied voltage. The angular position has
physical limits but the controller shouldn’t attempt to enforce them, so you
should leave the corresponding fields blank (see Figure 3-5).
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The Max down rate should be nonpositive (or blank). It limits the amount a
manipulated variable can decrease in a single control interval. Similarly, the
Max up rate should be nonnegative. It limits the increasing rate. Leave both
unconstrained (i.e., blank).

The shaded columns can’t be edited. If you want to change this descriptive
information, select the root node view and edit its tables. Such changes apply
to all controllers in the design.

Weight Tuning

Next, click the Weight Tuning tab to obtain a view like that shown in
Figure 3-6.

The weights specify trade-offs in the controller design. First consider the
Output weights. The controller will try to minimize the deviation of each
output from its setpoint or reference value. For each sampling instant in the
prediction horizon, the controller multiplies predicted deviations for each
output by the output’s weight, squares the result, and sums over all sampling
instants and all outputs. One of the controller’s objectives is to minimize this
sum, i.e., to provide good setpoint tracking. (See “Optimization Problem” on
page 2-5 for more details.)

Here, the angular position should track its setpoint, but the applied torque can
vary, provided that it stays within the specified constraints. Therefore, set the
torque’s weight to zero, which tells the controller that setpoint tracking is
unnecessary for this output.

Similarly, it’s acceptable for the applied voltage to deviate from nominal (it
must in order to change the angular position!). Its weight should be zero (the
default for manipulated variables). On the other hand, it’s probably
undesirable for the controller to make drastic changes in the applied voltage.
The Rate weight penalizes such changes. Use the default, 0.1.

When setting the rates, the relative magnitudes are more important than the
absolute values, and you must account for differences in the measurement
scales of each variable. For example, if a deviation of 0.1 units in variable A is
just as important as a deviation of 100 units in variable B, variable A’s weight
must be 1000 times larger than that for variable B.
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Model and Hotizons | Constraints  Wveight Tuning | Estimation (&dvanced) I
- Overall

More robust Faster response

1
| ! | ! | ! | ! | ! | ! | ! | ! K ! | ! |
Walue: ID.S
- Input weights
Marne Description Units Weight Rate Wieight

i Applied Yoltage v 0 0.1

~ Qutput weights
Marne Description Units Weight
Thetal Angular position Radians 1.0
T Torgue applied to load I rm 1]
Help |

Figure 3-6: Controller Design View, Weight Tuning Pane

The tables allow you to weight individual variables. The slider at the top
adjusts an overall trade-off between controller agressiveness and setpoint
tracking. Moving the slider to the left places a larger overall penalty on
manipulated variable changes, making them smaller. This usually increases
controller robustness, but setpoint tracking becomes more sluggish.

The Estimation tab allows you to adjust the controller’s response to
unmeasured disturbances (not used in this example).
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) control and Estimation Tools Manager 10l =|
File MPC Help
&= = S
4_:\ Wiorkspace - Simulation settings
=0 mrCdesion
% Plarit models Cortraller I MPC 'l Close loops [V
L CET;;:I;S Flart | =ys e Enforce constraints [V
EE@ Scenarios Duration ISD Control interval 0.1
o K._" Scenario]
~ Setpoints
Marne Units | Type Initial %' alue Size Time: Period Look &head
Thetal. Radians |step 0.0 1.0 5 [l
T M m |constant i r
- Unmeasured disturbance
Marne Units Type Initial %' alue Size Time: Period
Thetal Radians Constant 0.0
W W Constant 0o

Simulate: | Help |

Figure 3-7: Simulation Settings View for “Scenario1”

Defining a Simulation Scenario

If you haven’t already done so, expand the Scenarios node to show the
Scenariol subnode (see Figure 3-3). Select Scenariol to obtain the view

shown in Figure 3-7.

A scenario is a set of simulation conditions. As shown in Figure 3-7, you choose
the controller to be used (from among controllers in your design), the model to

act as the plant, and the simulation duration.

You must also specify all setpoints and disturbance inputs.
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Duplicate the settings shown in Figure 3-7, which will test the controller’s
servo response to a unit-step change in the angular position setpoint. All other
inputs are being held constant at their nominal values.

Note The ThetaL and V unmeasured disturbances allow you to simulate
additive disturbances to these variables. By default, these disturbances are
turned off, i.e., zero.

The Look ahead option designates that all future setpoint variations are
known. In that case, the controller can adjust the manipulated variable(s) in
advance to improve setpoint tracking. This would be unusual in practice, and
is not being used here.

) MPCdesign: Dutputs =10l
k|

File Edit Wiew Insert Tools Desktop Window Help

DeEE| | /RO E|E|

Plant Outputs
T

Thetal, Radians
~ i

T

1

o
n
T

I

T,MNm

10 I I I I
o 5] 10 15 20 25 30

Time (zec)

Figure 3-8: Response to Unit Step in the Angular Position Setpoint
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Running a Simulation

Once you’re ready to run the scenario, click the Simulate button or the green
arrow on the toolbar.

Note The green arrow tool is available from any view once you've defined at
least one scenario. It runs the active scenario, i.e., the one most recently
selected or modified.

We obtain the results shown in Figure 3-8. The blue curves are the output
signals, and the gray curves are the corresponding setpoints. The response is
very sluggish, and hasn'’t settled within the 30-second simulation period.

Note The window shown in Figure 3-8 provides many of the customization
features available in Control System Toolbox 1tiview and sisotool displays.
Try clicking a curve to obtain the numerical characteristics of the selected
point, or right-clicking in the plot area to open a customization menu.

The corresponding applied voltage adjustments appear in a separate window
(not shown) and are also very sluggish.

On the positive side, the applied torque stays well within bounds, as does the
applied voltage.

Retuning to Achieve a Faster Servo Response

To obtain a more rapid servo response, navigate to the MPC1 Weight Tuning
pane (select the MPC1 node to get the controller design view, then click the
Weight Tuning tab) and move the slider all the way to the right. Then click the
green arrow in the toolbar. Your results should now resemble Figure 3-9 and
Figure 3-10.

The angular position now settles within 10 seconds following the step. The
torque approaches its lower limit, but doesn’t exceed it (see Figure 3-9) and the
applied voltage stays within its limits (see Figure 3-10).
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Plant Outputs
1.5 T T T T T

0s

Thetal, Radians

a0 I I I I I
o 5] 10 15 20 25 30

Time (zec)

Figure 3-9: Faster Servo Response

Plant Input: %, %
200 T T T T T

5] 10 15 20 25 30
Time (zec)

100 I I I I I
o

Figure 3-10: Manipulated Variable Adjustments Corresponding to Figure 3-9
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Modifying the Scenario
Finally, increase the step size to © radians (select the Seenariol node and edit
the tabular value).

As shown in Figure 3-11 and Figure 3-12, the servo response is essentially as
good as before, and we avoid exceeding the torque constraint at -78.5 Nm, even
though the applied voltage is saturated for about 2.5 seconds (see Figure 3-12).

Plant Outputs
T

Thetal, Radians
L)
1

40

5] 10 15 20 25 30
Time (zec)

Figure 3-11: Servo Response for Step Increase of 1 Radians
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250

Plant Input: %, %
T

o 5] 10 15 20 25 30

Time (zec)

Figure 3-12: Voltage Adjustments Corresponding to Figure 3-11

Saving Your Work
Once you're satisfied with a controller’s performance, you can export it to the

workspace, for use in a Simulink® block diagram or for analysis (or you can
save it in a MAT-file).

To export a controller, right-click its node and select Export from the resulting
menu (or select the Controllers node, select the controller in the list, and click
the Export button). A dialog box like that shown in Figure 3-13 will appear.

The Controller source is the design from which you want to extract a
controller. There’s only one in this example, but in general you might be
working on several simultaneously. The Controller to export choice defaults
to the controller most recently selected. Again, there’s no choice in this case,
but there could be in general. The Name to assign edit box allows you to
rename the exported controller. (This will not change its name in the design
tool.)
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«): MPC Controller Exporter

Controller source:

Cantroller to export: IMPC1 vl
Mame to assign: IMPC1

& Export to MATLAB workspace

' Export to MAT-file

Export | Close | Help |

Figure 3-13: Exporting a Controller to the Workspace

Note When you exit the design tool, you will be prompted to save the entire
design in a MAT file. This allows you to reload it later using the File/Load
menu option or the Load icon on the toolbar.

Using Model Predictive Control Toolbox™
Commands

Once you've become familiar with the toolbox, you may find it more convenient
to build a controller and run a simulation using commands.

For example, suppose that you've defined the model as discussed in “Defining
the Plant Model” on page 3-5. Consider the following command sequence:

ManipulatedVariables = struct('Min', -220, 'Max', 220, 'Units',
V')

OutputVariables(1) = struct('Min', -Inf, 'Max', Inf, 'Units',
'rad');
OutputVariables(2)
‘Nm');

Weights = struct('Input', 0, 'InputRate', 0.05, 'Output', [10 0]);
Model.Plant = sys;

Model.Plant.OQutputGroup = {[1], 'Measured' ; [2], 'Unmeasured'};
Ts = 0.1;

PredictionHorizon = 10;

ControlHorizon = 2;

struct('Min', -78.5, 'Max', 78.5, 'Units',
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This creates several structure variables. For example, ManipulatedVariables
defines the display units and constraints for the applied voltage (the
manipulated plant input). Weights defines the tuning weights shown in
Figure 3-6 (but the numerical values used here provide better performance).
Model designates the plant model (stored in sys, which we defined earlier). The
code also sets the Model.Plant.OutputGroup property to designate the second
output as unmeasured.

Constructing an MPC Obiject

Use the mpc command to construct an MPC object called ServoMPC:

ServoMPC = mpc(Model, Ts, PredictionHorizon, ControlHorizon);

Like the LTI objects used to define linear, time-invariant dynamic models, an
MPC object contains a complete definition of a controller.

Setting, Getting, and Displaying Object Properties

Once you've constructed an MPC object, you can change its properties as you
would for other objects. For example, to change the prediction horizon, you
could use one of the following commands:

ServoMPC.PredictionHorizon = 12;
set (ServoMPC, 'PredictionHorizon', 12);
For a listing of all the object’s properties, you could type:
get (ServoMPC)
To access a particular property (e.g., the control horizon), you could type either:
M = get(ServoMPC, 'ControlHorizon');
M = ServoMPC.ControlHorizon;
You can also set multiple properties simultaneously.

Set the following properties before continuing with this example:

set(ServoMPC, 'Weights', Weights,
'ManipulatedVariables', ManipulatedVariables,
'"OutputVariables', OQutputVariables);
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Typing the name of an object without a terminating semicolon generates a
formatted display of the object’s properties. You can achieve the same effect
using the display command:

display(ServoMPC)

Running a Simulation

The sim command performs a linear simulation. For example, the following
code sequence defines constant setpoints for the two outputs, then runs a
simulation:

TimeSteps = round(10/Ts);
r = [pi 0];
[y, t, u]

sim(ServoMPC, TimeSteps, r);

By default, the model used to design the controller (stored in ServoMPC) also
represents the plant.

The sim command saves the output and manipulated variable sequences in
variables y and u. For example,

subplot(311)

plot(t, y(:,1), [0 t(end)], pi*[1 1])
title('Angular Position (radians)');
subplot(312)

plot(t, y(:,2), [0 t(end)], [-78.5 -78.5])
title('Torque (nM)')

subplot(313)

stairs(t, u)

title('Applied Voltage (volts)')
xlabel('Elapsed Time (seconds)')

produces the custom plot shown in Figure 3-14. The plot includes the angular
position’s setpoint. The servo response settles within 5 seconds with no
overshoot. It also displays the torque’s lower bound, which becomes active after
about 0.9 seconds but isn’t exceeded. The applied voltage saturates between
about 0.5 and 2.8 seconds, but the controller performs well despite this.
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Angular Position (radians)
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Figure 3-14: Plotting the Output of the sim Command

Using MPC Tools in Simulink®

Figure 3-15 is a Simulink block diagram for the servomechanism example.
Most of the blocks are from the standard Simulink library. There are two
exceptions:

¢ Servomechanism Model is an LTI System block from the Control System
Toolbox™ library. The LTI model sys (which must exist in the workspace)
defines its dynamic behavior. To review how to create this model, see
“Defining the Plant Model” on page 3-5.

¢ MPC Controller is from the MPC Blocks library. Figure 3-16 shows the
dialog box obtained by double-clicking this block. You need to supply an MPC
object, and ServoMPC is being used here. It must be in the workspace before
you run a simulation. The Design button opens the design tool, which allows
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you to create or modify the object. To review how to use commands to create
ServoMPC, see “Constructing an MPC Object” on page 3-21.

Angle (radians)

mo

mw

ref

™ Angle reference
MPC Controller
-zz20 - 0
Valtage (W) zz0 | Wmin [ Torque reference
Wmasx -
Taorque (Hm) Tmin
-?8.5

Tmax

Figure 3-15: Block Diagram for the Servomechanism Example
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<) Block Parameters: MPC Controller i im] 5

r  MPC block (mask) (link)

The MPC Controller block lets you design, simulste, and tune model predictive
contrallers.

You can use the MPC Design Tool to creste a nevy controller or modify an existing
one.

Reference and measured disturbance signals, by default, are external inputs to the
MPC hblock. In aternative you can specify custom workspace structures,
genersted for example by & 'To Workspace' block (see 'From YWorkspace!' block for
structure format). If the Look Ahead option is selected, the MPC controller will use
future values of the corresponding signal when computing current control actions.

Parameters

MPC controller IServoMPC Dresion... |

Initial contraller state ]

—Input signal
Uze custom
[~ Reference signal h ¥ Look ahead
[~ Measured disturbance l] V¥ | Lok ahead

¥ Enakle input port for measured disturbance
[~ Enakle input port for externally supplisd manipulsted varisbles to plant
[~ Enakle input port for input and outpt limits

Ok | Cancel | Help | Apply |

Figure 3-16: Model Predictive Control Toolbox™ Simulink® Block Dialog Box

The key features of the diagram are as follows:

¢ The MPC Controller output is the plant input. The Voltage Scope block plots
it (yellow curve). Minimum and maximum voltage values are shown as
magenta and cyan curves.

® The plant output is a vector signal. The first element is the measured
angular position. The second is the unmeasured torque. A Demux block
separates them. The angular position feeds back to the controller and plots
on the Angle scope (yellow curve). The torque plots on the Torque scope (with
its lower and upper bounds).

® The position setpoint varies sinusoidally with amplitude = radians and
frequency 0.4 rad/s. It also appears on the Angle scope (magenta curve).

Figure 3-17 shows the scope displays for a 20-second simulation. The angular
position tracks the sinusoidal setpoint variations well despite saturation of the

3-25



3 Case-Study Examples

applied voltage. The setpoint variations are more gradual than the step
changes used previously, so the torque stays well within its bounds.

1=IE -ioix
SEHLPL HBEIPAST | B CLH ARBEPESF -

SE|0PH ABE| B A S

Figure 3-17: Servomechanism Simulation Scopes

3-26



Paper Machine Process Control

Paper Machine Process Control

Stock: Gp, Np Feed Tank Headbox Wire

-
Wet Paper

Hy, Ny ——| Hy, Nof—> e

White Water: G,,, N,

Figure 3-18: Schematic of Paper Machine Headbox Elements

Ying et al. [1] studied the control of consistency (percentage pulp fibers in
aqueous suspension) and liquid level in a paper machine headbox, a schematic
of which is shown in Figure 3-18. The process model is a set of ordinary
differential equations (ODESs) in bilinear form. The states are

x = [H, Hy N, N2]T

where H; is the liquid level in the feed tank, Hj is the headbox liquid level, N;
is the feed tank consistency, and N is the headbox consistency. The measured
outputs are:

y = [H, N, NZ]T

The primary control objectives are to hold Hy and N at setpoints. There are
two manipulated variables

v 6,6

where G, is the flow rate of stock entering the feed tank, and G,, is the recycled
white water flow rate. The consistency of stock entering the feed tank, IV, is a
measured disturbance.

v:Np
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The white water consistency is an unmeasured disturbance.
d=N,

Variables are normalized. All are zero at the nominal steady state and have
comparable numerical ranges. Time units are minutes. The process is
open-loop stable.

The mpcdemos folder contains the file mpc_pmmodel.m, which implements the
nonlinear model equations as a Simulink® S-function. The input sequence is
G,, Gy, N, N, and the output sequence is Hy, Ny, N.

Linearizing the Nonlinear Model

The paper machine headbox model is easy to linearize analytically, yielding the
following state space matrices:

A = [-1.9300 0 0 0
0.3940 -0.4260 0 0
0 0 -0.6300 0
0.8200 -0.7840 0.4130 -0.4260];
B = [1.2740 1.2740 0 0
0 0 0 0
1.3400 -0.6500 0.2030 0.4060
0 0 0 0];
cC =10 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000];
D = zeros(3,4);

Use these to create a continuous-time LTI state-space model, as follows:

PaperMach = ss(A, B, C, D);
PaperMach.InputName = {'G_p', 'G. w', 'N.p', 'Nw'};
PaperMach.OutputName = {'H 2', 'N.1'; 'N_2'};

(The last two commands are optional; they improve plot labeling.)

As a quick check of model validity, plot its step responses as follows:

step(PaperMach) ;
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The results appear in Figure 3-19. Note the following:

® The two manipulated variables affect all three outputs.

® They have nearly identical effects on H,.

® The G, > N, pairing exhibits an inverse response.

These features make it difficult to achieve accurate, independent control of Hy

and N,.

Step Response

From: G From: G,

Fram: NIJ

From: M,

Amplitude:
Tor M,
Lo = mow s

Tor b,
L o = MW

Time (zec)

Figure 3-19: Linearized Paper Machine Model’s Step Responses
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MPC Design
Type

mpctool

to open the MPC design tool. Import your LTI Paper Mach model as described
in “Opening MPCTOOL and Importing a Model” on page 3-7.

Next, define signal properties, being sure to designate N, and N, as measured
and unmeasured disturbances, respectively. Your specifications should
resemble Figure 3-20.

~ Input signal properties

Mame Type Description Units orminal
G_p Manipulated Feed flow rate ki 0.0
Gy Manipulated White water flow rate ki 0.0
M_p Meas. disturb, Feed consistency £ 0.0
[ _w Untess. disturb, White water consistency £ 0.0

~ Qutput signal properies

Mame Type Description Units orminal
H_2 Measured Headhbox level l .0
M_1 Measured Feed tank consistency £ 0.0
M_2 Measured Head box consistency £ 0.0

Figure 3-20: Signal Properties for the Paper Machine Application

Initial Controller Design

If necessary, review “Specifying Controller Properties” on page 3-10. Then click
the MPC1 node and specify the following controller parameters (leaving others
at their default values):

¢ Models and Horizons. Control interval = 2 minutes

* Constraints. For both G, and G,,, Minimum = -10, Maximum = 10, Max
down rate = -2, Max up rate = 2.

* Weight Tuning. For both G, and G,,, Weight = 0, Rate weight = 0.4.
For N;, Weight = 0. (Other outputs have Weight = 1.)
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Servo Response
Finally, select the Scenariol node and define a servo-response test:

® Duration = 30

* H, setpoint = 1 (constant)

Simulate the scenario. You should obtain results like those shown in
Figure 3-21 and Figure 3-22.

Plant Outputs
T

0z I I I I I
o 5] 10 15 20 25 30

Time (zec)

Figure 3-21: Servo Response for Unit Step in Headbox Level Setpoint
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Figure 3-22: Manipulated Variable Moves Corresponding to Figure 3-21

Weight Tuning

The response time is about 8 minutes. We could reduce this by decreasing the
control interval, reducing the manipulated variable rate weights, and/or
eliminating the up/down rate constraints. The present design uses a
conservative control effort, which would usually improve robustness, so we will
continue with the current settings.

Note the steady-state error in N (it’s about -0.25 units in Figure 3-21). There
are only two manipulated variables, so it’s impossible to hold three outputs at
setpoints. We don’t have a setpoint for N; so we have set its weight to zero (see
controller settings in “Initial Controller Design” on page 3-30). Otherwise, all
three outputs would have exhibited steady-state error (try it).

Consistency control is more important than level control. Try decreasing the Hy
weight from 1 to 0.2. You should find that the peak error in N, decreases by
almost an order of magnitude, but the Hy response time increases from 8 to
about 18 minutes (not shown). Use these modified output weights in
subsequent tests.
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Feedforward Control

To configure a test of the controller’s feedforward response, define a new
scenario by clicking the Scenarios node, clicking the New button, and
renaming the new scenario Feedforward (by editing its name in the tree or the
summary list).

In the Feedforward scenario, define a step change in the measured
disturbance, N,,, with Initial value = 0, Size = 1, Time = 10. All output
setpoints should be zero. Set the Duration to 30 time units.

If response plots from the above servo response tests are still open, close them.
Simulate the Feedforward scenario. You should find that the H; and No
outputs deviate very little from their setpoints (not shown).

Experiment with the “look ahead” feature. First, observe that in the simulation
just completed the manipulated variables didn’t begin to move until the
disturbance occurred at ¢ = 10 minutes. Return to the Feedforward scenario,
select the Look ahead option for the measured disturbance, and repeat the
simulation.

Notice that the manipulated variables begin changing in advance of the
disturbance. This happens because the look ahead option uses known future
values of the disturbance when computing its control action. For example, at
time ¢ = 0 the controller is using a prediction horizon of 10 control intervals (20
time units), so it “sees” the impending disturbance at ¢ = 10 and begins to
prepare for it. The output setpoint tracking improves slightly, but it was
already so good that the improvement is insignificant. Also, it’s unlikely that
there would be advanced knowledge of a consistency disturbance, so clear the
Look ahead check box for subsequent simulations.

Unmeasured Input Disturbance

To test the response to unmeasured disturbances, define another new scenario
called Feedback. Configure it as for Feedforward, but set the measured
disturbance, N, to zero (constant), and the unmeasured disturbance, N, to
1.0 (constant). This simulates a sudden, sustained, unmeasured disturbance
occurring at time zero.

Running the simulation should yield results like those in Figure 3-23. The two
controlled outputs (H5 and Nj) exhibit relatively small deviations from their
setpoints (which are zero). The settling time is longer than for the servo
response (compare to Figure 3-21) which is typical.
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Figure 3-23: Feedback Scenario: Unmeasured Disturbance Rejection

One factor limiting performance is the chosen control interval of 2 time units.
The controller can’t respond to the disturbance until it first appears in the
outputs, i.e., at £ = 2. If you wish, experiment with larger and smaller intervals
(modify the specification on the controller’s Model and Horizons tab).

Effect of Estimator Assumptions

Another factor influencing the response to unmeasured disturbances (and
model prediction error) is the estimator configuration. The results shown in
Figure 3-23 are for the default configuration.

To view the default assumptions, select the controller node (MPC1), and click
its Estimation tab. The resulting view should be as shown in Figure 3-24. The
status message (bottom of figure) indicates that Model Predictive Control
Toolbox™ default assumptions are being used.
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Model and Horizons | Constraints | Weight Tuning E

Overall estimatar gain

Loy gain High gain
1
| 0 | 0 | 0 | 0 | 0 K 0 | 0 | 0 | 0 | 0 |
Walue: ID.S
Output Disturbances | Input Disturbances | Measuremert Moise I
Marne Units | Type Magnitude
H_2 m |steps 10
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& Signal-by-signal h_2 o, [white 0.0

LTI model in workspace Erowvse ... |

Unmeasured
Disturbance
+

Outputs

Estimation parameters: MPC defaults Use MPC Defaults | Help |

Figure 3-24: Default Estimator Assumptions: Output Disturbances

Now consider the upper part of the figure. The Output Disturbances tab is
active, and its Signal-by-signal option is selected. According to the tabular
data, the controller is assuming independent, step-like disturbances (i.e.,
integrated white noise) in the first two outputs.

Click the Input Disturbances tab. Verify that the controller is also assuming
independent step-like disturbances in the unmeasured disturbance input.

Thus, there are a total of three independent, sustained (step-like) disturbances.
This allows the controller to eliminate offset in all three measured outputs.

The disturbance magnitudes are unity by default. Making one larger than the
rest would signify a more important disturbance at that location.
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Click the Measurement Noise tab. Verify that white noise (unit magnitude) is
being added to each output. The noise magnitude governs how much influence
each measurement has on the controller’s decisions. For example, if a
particular measurement is relatively noisy, the controller will give it less
weight, relying instead upon the model predictions of that output. This
provides a noise filtering capability.

In the paper machine application, the default disturbance assumptions are
reasonable. It is difficult to improve disturbance rejection significantly by
modifying them.

Controlling the Nonlinear Plant in Simulink®

It’s good practice to run initial tests using the linear plant model as described
in “Servo Response” on page 3-31 and “Unmeasured Input Disturbance” on
page 3-33. Such tests don’t introduce prediction error, and are a useful
benchmark for more demanding tests with a nonlinear plant model. The
controller’s prediction model is linear, so such tests introduce prediction error.

= mpec_p del 1 b@

S-Function Outputs

¥ ¥ ¥

1

Unmeasured
Disturbance

mo

|:| - m MPC ref

b= Setpoints

md |

MPC Controller 4|I|

Measured
Disturbance

Figure 3-25: Paper Machine Headbox Control Using MPC Tools in Simulink®

Figure 3-25 is a Simulink diagram in which the Model Predictive Control
Toolbox controller is being used to regulate the nonlinear paper machine
headbox model. The block labeled S-Function embodies the nonlinear model,
which is coded in an M-file called mpc_pmmodel.m.
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As shown in the following dialog box, the MPC block references a controller
design called MPC1, which was exported to the MATLAB® workspace from the
design tool. Note also that the measured disturbance inport is enabled,
allowing the measured disturbance to be connected as shown in Figure 3-25.

<) Block Parameters: MPC Controller i im] 5

r  MPC block (mask) (link)

The MPC Caontroller block lets you design, simulste, and tune model predictive
contrallers.

You can use the MPC Design Tool to creste a newy controller or modify an existing
one.

Reference and measured disturbance signals, by default, are external inputs to the
MPC hlock. In aternative you can specify custom workspace structures,
genersted for example by & 'To Workspace' block (see 'From YWorkspace!' block for
structure format). If the Look Ahead option is selected, the MPC cortroller will use
future values of the corresponding signal when computing current control actions.

Parameters

MPC contraller papci Design... |

Initial contraller state ]

—Input signal
Uze custom
[~ Reference signal h ¥ Look ahesd
I_ Measured disturbance l] |7 Lok ahesd

[~ Enakle input port for externally supplisd manipulated varisbles to plart
[~ Enakle input port for input and outpt limits

Ok | Cancel | Help | Apply |

Figure 3-26 shows the scope display from the “Outputs” block for the setup of
Figure 3-25, i.e., an unmeasured disturbance. The yellow curve is Hy, the
magenta is Ny, and the cyan is Ny. Comparing to Figure 3-23, the results are
almost identical, indicating that the effects of nonlinearity and prediction error
were insignificant in this case. Figure 3-27 shows the corresponding
manipulated variable moves (from the “MVs” scope in Figure 3-25) which are
smooth yet reasonably fast.

As disturbance size increases, nonlinear effects begin to appear. For a
disturbance size of 4, the results are still essentially the same as shown in
Figure 3-26 and Figure 3-27 (scaled by a factor of 4), but for a disturbance size
of 6, the setpoint deviations are relatively larger, and the curve shapes differ
(not shown). There are marked qualitative and quantitative differences when
the disturbance size is 8. When it is 9, deviations become very large, and the
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MVs saturate. If such disturbances were likely, the controller would have to be
retuned to accommodate them.

Figure 3-26: Simulink® Test, Output Variables

Figure 3-27: Simulink® Test, Manipulated Variables



Bumpless Transfer in MPC

Bumpless Transfer in MPC

During startup of a continuous plant, the operators often set the actuators
manually until the plant is near the desired operating point. A sudden switch
to automatic control can cause a bump, i.e., a large actuator movement. The
same issue arises when you try to switch between alternative controllers, each
of which has been designed for a particular operating point. A Model Predictive
Controller must monitor all known plant signals even when it is not in control
of the actuators. This lets it continuously refine its state estimate and make
appropriate actuator adjustments when it is switched to automatic. A smooth
transition is called bumpless transfer.

A Model Predictive Control Toolbox™ demo illustrates this behavior. To
initialize the demo, type mpcbumpless at MATLAB® command line. The
Simulink® block diagram shown in Figure 3-28 opens.

Output

JTA uy [ e
= den(z)
Saturation Transfer Fen
manipulated
wariable
mo (i
mv MPLC ref
et mv

MPC Controller

Switch

Operator
Commands

output and
reference,
awitching signal

Figure 3-28: Simulink® Block Diagram for the MPC Bumpless Transfer Demo

The plant is a stable single-input single-output system. Figure 3-29 shows its
open-loop unit step response. Figure 3-30 shows the MPC block configuration

settings for this case.
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Step Response
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Figure 3-29: Open-Loop Unit Step Response

<) Block Parameters: MPC Controller i im] 5

r  MPC block (mask) (link)

The MPC Caontroller block lets you design, simulste, and tune model predictive
contrallers.

You can use the MPC Design Tool to creste a newy controller or modify an existing
one.

Reference and measured disturbance signals, by default, are external inputs to the
MPC hlock. In aternative you can specify custom workspace structures,
genersted for example by & 'To Workspace' block (see 'From YWorkspace!' block for
structure format). If the Look Ahead option is selected, the MPC cortroller will use
future values of the corresponding signal when computing current control actions.

Parameters
MPC cortraller  MPCT Design |

Initial contraller state ]

—Input signal
Uze custom
[~ Reference signal h ¥ Look ahesd
I_ Measured disturbance l] |7 Lok ahesd

[~ Enakle input port for measured disturbance

[+ Enabie input port for externally suppiied manipulsted variables to pla
[~ Enakle input port for input and outpt limits

Figure 3-30: MPC Block Configuration Settings
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The demo creates MPC1, the controller object. Its sampling period is 0.5. For
additional design details, see the demo’s documentation.

As shown in Figure 3-30, the block’s optional input port for externally supplied
manipulated variables is selected. This causes the inport labeled ext.mv to
appear (Figure 3-28 shows how this is connnected).

This demo tests the effect of switching the controller from automatic to manual
and back. To simulate this, a Pulse Generator block labeled switching signal
sends either 1 or 0 to a switch. When it sends 1, the system is in automatic
mode, and the MPC block’s output goes to the plant. Otherwise, the system is
in manual mode, and the signal from the Operator Commands block goes to the
plant. In both cases the actual plant input feeds back to the controller, as
shown in Figure 3-28, unless the saturation limits of -1 and 1 are encountered.
The controller also monitors the plant ouput at all times. As shown in

Figure 3-31, the system is in automatic mode for the first 90 time units
(switching signal is 1). The controller moves the output from its initial value,
0, to the reference value, -0.5.

100 150

Figure 3-31: Output, Reference and Switching Signal
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The following figure shows the required manipulated variable adjustments.

100 150 200

Figure 3-32: Manipulated Variable (Actuator) Adjustments

At time 90, the system switches to manual mode. As shown in Figure 3-32, the
operator sets the manipulated variable to -0.5 for 10 time units, and then to 0.
Figure 3-31 shows the open-loop response during this period. The controller is
in manual mode, so it can’t track the reference.

At time 180, the system switches back to automatic mode, where it stays for the
duration. Figure 3-31 shows that the output returns to the reference value
smoothly, and Figure 3-32 shows similarly smooth adjustments to the
manipulated variable.

Note that the controller’s state estimator has default zero initial conditions,
which are appropriate when this simulation begins. Thus, there is no bump at
startup. In general you would need to start the system in manual mode for long
enough to allow the controller to acquire an accurate state estimate before
switching to automatic mode. You could monitor the controller’s adjustments
while it was in manual mode to see when it had converged to a steady condition.

Now consider the situation shown in Figure 3-33. The external manipulated
variable feedback has been disconnected. The behavior is as if the option were
not selected in Figure 3-30, i.e., the block assumes that its adjustments are
always going to the plant. This is incorrect whenever the system switches to
manual mode.



Bumpless Transfer in MPC
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Figure 3-33: External Manipulated Variable Feedback Disconnected

As shown in Figure 3-34 and Figure 3-35, the behavior is identical to the
original case for the first 180 time units (compare to Figure 3-31 and

Figure 3-32). When the system switches to automatic mode at time 180,
however, there is a large bump. This is because the controller is using the
incorrect plant input to estimate the plant state during the time the system is

in manual mode.

3-43



3 Case-Study Examples

100 150

Figure 3-34: Output Response with Manipulated Variable Feedback
Disconnected

100 150

Figure 3-35: Manipulated Variable Adjustments with Manipulated Variable
Feedback Disconnected
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predictive controller as defined by a model predictive
control object
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MPC Controller Block

Opening the Library
The MPC Simulink® Library provides a single block representing the MPC
controller.

The library can be opened from the main Simulink library or by typing mpclib
from the command prompt.

ZLibrary: mpclib 10l =|

File Edit WYiew Formatb Help

mao e medsired
autputs

manipuiated  my MPC refle references
variahbles

md j¢ freasired

MPC Controller

Ready 100% Locked v

Figure 4-1: MPC Simulink® Library

After copying the MPC Controller block into your diagram, double-click the
block to open the mask window.

MPC Controller Block Mask

Figure 4-2 shows the mask obtained by double-clicking the MPC Controller
block.



MPC Controller Block

<) Block Parameters: MPC Controller i im] 5

r  MPC block (mask) (link)

The MPC Caontroller block lets you design, simulste, and tune model predictive
contrallers.

You can use the MPC Design Tool to creste a newy controller or modify an existing
one.

Reference and measured disturbance signals, by default, are external inputs to the
MPC hlock. In aternative you can specify custom workspace structures,
genersted for example by & 'To Workspace' block (see 'From YWorkspace!' block for
structure format). If the Look Ahead option is selected, the MPC cortroller will use
future values of the corresponding signal when computing current control actions.

Parameters

MPC caontroller I Design... |

Initial contraller state ]

—Input signal
Uze custom
[~ Reference signal h ¥ Look ahesd
I_ Measured disturbance l] |7 Lok ahesd

[¥ Enakle input port for measured disturbance
[~ Enakle input port for externally supplisd manipulated varisbles to plart
[~ Enakle input port for input and outpt limits

Ok | Cancel | Help | Apply

Figure 4-2: MPC Controller Block Mask

You must supply the mask with an MPC object that defines the controller.
There are three ways to do this:

1 In the MPC controller field, enter the name of an MPC object that exists in
your workspace.

2 In the MPC controller field, enter the name of the MPC object to be created,
and then click the Design button to open the MPC design tool. Design the
MPC object. (If the named MPC object exists in your workspace, you can
modify it using the design tool.)

3 Ifthe MPC Controller block is connected to the plant it will control, you can
click the Design button without entering an MPC object name. The MPC
Controller block prompts you to enter the number of manipulated variables
and then constructs a default MPC object by linearizing the plant defined in
the Simulink diagram. This option requires Simulink® Control Design™
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software. See “Importing a Plant Model” on page 5-9 for more information
about creating linearized plant models using Model Predictive Control
Toolbox  software. Refer to the Simulink® Control Design™ documentation
for more information about the linearization process.

Note You can run closed-loop simulations while the controller object is edited
in the design tool. In this case, the current settings from the design tool are
used in the Simulink simulation. This makes it more convenient for you to
tune the controller parameters. Once you close the design tool, you must
export the final version of the controller object to the workspace so it can be
used in simulations.

Input Signals

By default, you must connect appropriate Simulink signals to the inports of the
MPC Controller block. The measured output (mo) and reference (ref) inports
are required. You can create optional inports by selecting check boxes at the
bottom of the block mask. For example, in Figure 4-2 the measured disturbance
option has been selected and the corresponding inport (md) appears in

Figure 4-1. This provides feedforward compensation for measured
disturbances.

The second inport option allows you to keep the controller informed of the
actual manipulated variable values. Ideally, the actual manipulated variables
are those specified by the outport of the controller block mv. However,
unexpected constraints, disturbances, or plant nonlinearities can modify the
values actually implemented in the plant. If the actual values are known and
fed back to the controller, its predictions improve. This feature can also
improve the transition between manual and automatic operation. See
“Bumpless Transfer in MPC” on page 3-39.

The third inport option allows you to specify constraints that vary with time
during a simulation. (Otherwise, the block uses the constant constraint values
stored within its MPC Controller object.) The demo mpcvarbounds shows how
this option works. It enables inports for lower and upper bounds on the
manipulated variables (inports umin and umax) and lower and upper bounds on
the controlled outputs (inports ymin and ymax). An unconnected inport causes
the corresponding variable to be unconstrained.



MPC Controller Block

Look Ahead and Signals from the Workspace

The Input signals section of the mask allows you to define the reference and/or
measured disturbance signals as variables in the workspace. In this case, the
block ignores the signals connected to its corresponding inports.

You must create the signal as a MATLAB structure with two fields: time and
signals. The Simulink From Workspace and To Workspace blocks use the
same format.

For example, to specify a sinusoidal reference signal sin(¢) over a time horizon
of 10 seconds, use the following MATLAB commands:

time=(0:Ts:10);
ref.time=time;
ref.signals.values=sin(time);

where Ts is the controller sampling period. After the variable is created, select
the Use custom reference signal check box and enter the variable name in the
editable field.

An alternative way to create such a signal would be to run a Simulink
simulation in which you connect an appropriate block (Sine, in the above
example) to a To Workspace block.

The Look ahead check box enables an anticipative action on the corresponding
signal. This option becomes available when you define reference and measured
disturbance signals in the workspace. For example, if you define the reference
signal as described above and select the Look ahead option, the controller
accounts for known future reference variations in its predictions, which usually
improves setpoint tracking. When Look ahead is disabled, the controller
assumes that the current reference (or measured disturbance) value applies
throughout its prediction horizon.

See the demo mpcpreview for an illustrative example of enabling preview and
reading signals from the workspace.

Initialization

If Initial controller state is unspecified, as in Figure 4-2, the controller uses a
default initial condition in simulations. You can change the initial condition by
specifying an mpcstate object. See “MPC Simulation Options Object” on

page 8-14.
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Using Model Predictive Control Toolbox™ Software
with Real-Time Workshop® Software

The C sources of the S-function executing the MPC Controller block code are
available in the mpcutils/src directory. You can build a real-time executable
by pressing Ctrl+B on your Simulink diagram to invoke Real-Time Workshop®
and build the model.

In some cases, it is necessary to copy the source files (mpc_sfun.c, mpc_sfun.h,
mpc_common.c, mat_macros.h, dantzgmp.h, dantzgmp_solver.c) to a visible
directory, such as the current directory '.', or 'C: \MATLAB\rtw\c\src'.

The MPC Controller block can be also used to produce real-time executable
files that run under xPC Target™ software.



Reference for the Design

Tool GUI

This chapter is the reference manual for the Model Predictive Control Toolbox™ design tool
(graphical user interface). For example design tool applications, see the Model Predictive Control
Toolbox Getting Started (p. -1), or Case-Study Examples (p. 3-1).

Opening the MPC Design Tool (p. 5-2)
Menu Bar (p. 5-3)

Toolbar (p. 5-6)

Tree View (p. 5-7)

Importing a Plant Model (p. 5-9)
Importing a Controller (p. 5-15)
Exporting a Controller (p. 5-19)
Signal Definition View (p. 5-21)

Plant Models View (p. 5-26)

Controllers View (p. 5-29)

Simulation Scenarios List (p. 5-33)
Controller Specifications View (p. 5-36)
Simulation Scenario View (p. 5-59)

Response Plots (p. 5-67)

How to start the design tool in MATLAB® or Simulink®
Describes the main menu options
Describes the toolbar icons and their use

Explains how to navigate among the various design tool
views

Plant Model Import dialog box and its options
The controller import dialog box and its options
The controller export dialog box and its options

Describes of the initial design tool view, which defines the
overall controller structure

Lists the plant models available to your design, and
allows you to import others

Lists the controllers in your design and allows you to
copy, export, rename, or delete a controller

Lists the simulation scenarios in your design
Shows how to specify a controller
Shows how to set up a simulation

Describes the plots generated in a simulation and their
customization
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Opening the MPC Design Tool

To open the Design Tool in MATLAB®, type

mpctool

The design tool is part of the Control and Estimation Tools Manager. When
invoked as shown above, the design tool opens and creates a new project named

MPCdesign.

If you started the tool previously, the above command makes the tool visible

but does not create a new project.

Alternatively, if your Simulink® model contains a Model Predictive Controller
block, you can double-click the block to obtain its mask (see example below) and
click the Design button. If the MPC controller field is empty, the design tool
will create a default controller. Otherwise, it will load the named controller
object, which must be in your workspace, so you can view and modify it.

<) Block Parameters: MPC Controller i im] 5

r  MPC block (mask) (link)

The MPC Controller block lets you design, simulste, and tune model predictive
contrallers.

You can use the MPC Design Tool to creste a nevy controller or modify an existing
one.

Reference and measured disturbance signals, by default, are external inputs to the
MPC hblock. In aternative you can specify custom workspace structures,
genersted for example by & 'To Workspace' block (see 'From YWorkspace!' block for
structure format). If the Look Ahead option is selected, the MPC controller will use
future values of the corresponding signal when computing current control actions.

Parameters

MPC controller IServoMPC Dresion... |

Initial contraller state ]

—Input signal
Uze custom
[~ Reference signal h ¥ Look ahead
[~ Measured disturbance l] V¥ | Lok ahead

¥ Enakle input port for measured disturbance
[~ Enakle input port for externally supplisd manipulsted varisbles to plant
[~ Enakle input port for input and outpt limits

Ok Cancel Help Apply




Menu Bar

Menu Bar

The design tool’s menu bar appears whenever you've selected a Model
Predictive Control Toolbox™ project or task in the tree (see “Tree View” on
page 5-7). The menu bar’s MPC option distinguishes it from other control and
estimation tools. See the example below. The following sections describe each
menu option.

] control and Estimation Tools Manager

File MPC Help

File Menu

New Design

Creates a new (empty) Model Predictive Control Toolbox design project within
the Control and Estimation Tools Manager and assigns it a default name. You
can also create a new design using the toolbar (see “Toolbar” on page 5-6).

Load

Loads a saved design. A dialog box asks you to specify the MAT-file containing
the saved design. If the MAT-file contains multiple projects, you must select
the one(s) to be loaded (see example below).

i

Select projects to load:

e .

=
Load from: ﬁPCdesign.mat |

Ok | Cancell Help |

You can also load a design using the toolbar (see “T'oolbar” on page 5-6).
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Save

Saves a design so you can use it later. The data are saved in a MAT-file. A
dialog allows you to specify the file name (see below). If you are working on
multiple projects, you can select those to be saved.

i

Select projects to save:

e .

[
Save 8zt MPCdesign _I

Ok | Cancell Help |

You can also select the Save option using the toolbar (see “Toolbar” on
page 5-6).

Close

Closes the design tool. If you’ve modified the design, you’ll be asked whether or
not you want to save it before closing.

MPC Menu

Import
You have the following options:

¢ Plant model — Import a plant model using the model import dialog box (see
“Importing a Plant Model” on page 5-9).

¢ Controller — Import a controller using the controller import dialog box (see
“Importing a Controller” on page 5-15).



Menu Bar

Export

Export a controller using the export dialog box (see “Exporting a Controller” on
page 5-19). This option won’t be enabled until your design includes at least one
fully specified controller.

Simulate

Simulate the current scenario, i.e., the one most recently simulated or selected
in the tree (see “Tree View” on page 5-7). You can select this option from the
keyboard by pressing Ctrl+R, or using the toolbar icon (see “Toolbar” on

page 5-6).

The Simulate option won’t be unabled until your design includes at least one
fully specified simulation scenario.
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Toolbar

The toolbar, shown below, provides quick access to certain menu options.

Simulate Current

New Design ‘\‘ / Scenario
Toggle Text

o= E e * Output Area

Load Saved Design Save Current Design

For more information on the first four functions, see the following:

¢ “New Design” on page 5-3

¢ “Load” on page 5-3

® “Save” on page 5-4

¢ “Simulate” on page 5-5

The text output area is a text display located along the bottom of the tool that
displays progress messages and diagnostics. In the above view, the toggle

button is pushed in, so the text display area appears. If you are working on a
small screen, you might use the toggle button to hide the text area, allowing

more room to display the design parameters.



Tree View

Tree View

The tree view appears in a frame on the design tool’s left-hand side (see
example below). When you select one of the tree’s nodes (by clicking its name
oricon) the larger frame to its right shows a dialog pane that allows you to view
and edit the specifications associated with that item.

Node Types

#\ wiorkspace Plant models list
= [ Distillstion Contral

B Plart models

5 cortrotors <————— Controllers list
i

MPC project nodes Soenarios Controller specifications

-[141] Unconstrained

= [ scenarins <————— Simulation scenarios list
------ k‘__ Accurate Model

I Perturted sl <l —=Scenario specifications

The above example shows two Model Predictive Control Toolbox™ design
project nodes, Distillation Control and CSTR Control, and their subnodes.
For more details on each node type, see the following:

® MPC design project/task — see “Signal Definition View” on page 5-21

¢ Plant models list — see “Plant Models View” on page 5-26

¢ Controllers list — see “Controllers View” on page 5-29

¢ Controller specifications — see “Simulation Scenarios List” on page 5-33

® Scenarios list — see “Simulation Scenario View” on page 5-59

® Scenario specifications — see “Controller Specifications View” on page 5-36

Renaming a Node

You can rename following node types:

¢ MPC design project/task
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¢ Controller specifications

® Scenario specifications
To rename a node, do one of the following:
¢ Click the name, wait for an edit box to appear, type the desired name, and

press the Enter key to finalize your choice.

¢ Right-click the name, select the Rename menu option, and enter the desired
name in the dialog box.

¢ To rename a controller specification node, select Controllers and edit the
controller name in the table.

® To rename a scenario specification node, select Scenarios and edit the
scenario name in the table.



Importing a Plant Model

Importing a Plant Model

To import a plant model, do one of the following:

¢ Select the MPC/Import/Plant Model menu option.

¢ Select the MPC project/task node in the tree (see “Tree View” on page 5-7),
and then click the Import Plant button.

¢ Right-click the MPC project/task node and select the Import Plant Model
menu option.

¢ If you've already imported a model, select the Plant models node, and then
click the Import button.

¢ If you've already imported a model, right-click the Plant models node and
select the Import Model menu option.

All of the above open the Plant Model Importer dialog box (see the dialog box in
“Import from” on page 5-15 for an example). Within the dialog box you can
import an LTI model from the workspace or, when you have Simulink® Control

Design™ software, you can import a linearized plant model from the Simulink
model.

The following sections describe the dialog box options for importing an LTI
model from the workspace:

¢ “Import from” on page 5-15

¢ “Import to” on page 5-17

* “Buttons” on page 5-17

¢ “Importing a Linearized Plant Model” on page 5-12
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Import from
Use these options to set the location from which the model will be imported.

MATLAB workspace

«): Plant Model Importer =10l

Import LTI kodel | Lineatized BPlant fratm Sirmulitk: I

Impart fram: ltems in your workspace:
' MATLAE workspace Yariable Name | Size | Bytes | Class |
 MAT-file & e 23 a1z ff
@ DCp 23 378 ff

[AT=TilE name:

Erowvse ... |

~Propertie
todel name = DC o

Type = Transfer function (i)
Mumber of inputz =3
Mumber of outputs =2
Sampling: Continuous
Input namegs):
fReflux Rate', 'Steam Rate', 'Feed Rate'}
Input groupgs):
Meazured: [3]
Manipulated: [1 2]
Clutput nameiz): LI

Help |

Impart ta: IMPCdesign VI

This is the default option and is the case shown in the above example. The
Items in your workspace area in the upper-right corner lists all candidate
models in your MATLAB workspace. Select one by clicking it. The Properties
area lists the selected model’s properties (the DC model in the above example).
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MAT-file
The upper part of the dialog box changes as shown below.
1=
Import LTI Mode! | |
Impart fram: ltems in your MAT-file:
" MATLAE workspace Yariable Name | Size | Bytes | Class |
& MAT-file @ DC 1x1 a1z ff
8 DCp 131 378 ff
MAT-file name:

DCmodels mat

Erowze ... |

The MAT-file name edit box becomes active. Type the desired MAT-file name
here (if it’s not on the MATLAB® path, enter the complete file path). You can
also use the Browse button which opens a standard file chooser dialog box.

In the above example, file DCmodels.mat contains two models. Their names
appear in the Items in your MAT-file area in the upper-right corner. As with
the workspace option, the selected model’s properties appear in the Properties
area.

Import to

The combo box at the bottom of the dialog box allows you to specify the MPC
project/task into which the plant model will be imported (see example below).
It defaults to that most recently active.

Impart ta: IMPCdesign Vl Impart | Cloze | Help |

Buttons

Import

Select the model you want to import from the Items list in the upper-right
corner of the dialog box. Verify that the Import to option designates the correct
project/task. Click the Import button to import the model.

You can select Plant models in the tree to verify that the model has been
loaded. (See “Tree View” on page 5-7, and “Plant Models View” on page 5-26.)
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The import dialog box remains visible until you close it, allowing you to import
additional models.

Close

Click Close to close the dialog box. You can also click the Close icon on the title
bar.

Importing a Linearized Plant Model

1 Open the design tool from within a Simulink® model as discussed in
“Opening the MPC Design Tool” on page 5-2.

2 Open the Plant Model Importer dialog box (see “Importing a Plant Model” on
page 5-9).

3 Click the Linearized Plant from Simulink tab (see the following example).

Note If you haven’t opened the design tool from within a Simulink diagram,
you won’t be able to access the required tab in step 3.




Importing a Plant Model

«): Plant Model Importer =10l

rport LTI Madel | Linearized Plart from Simulink 3

Lineatization model name IMPC open loop plant 2

Operating Conditions

r Replace the MPC nominal 10 values with those derived from the operating condition

" Creste a a new operating condition from MPC IO values

& Usethe previously computed operating condition I Default Cperating Point | l

Linearization L

Select linearization s by right clicking on the desired line in your Simulink mocel

Active Block Marme Cutp... | Sign.... | Config... | Cpe...
[T |.inearization 105 by right clicking on & signal u] . = T
Highlight Selected Signal | Refresh Signal Mames | Delete Point |
Importto: | MPC Task - MPC Cortraller | OK | Close | Hel |

Linearization Process
When you click OK, the design tool uses Simulink Control Design software to
create a linearized plant model. It performs the following tasks automatically:

1 Configures the Control and Estimation Tools Manager.

2 Temporarily inserts linearization input and output points in the Simulink
model at the inputs and outputs of the MPC block.

3 When the Create a new operating condition from MPC I/O values option
is selected, the Model Predictive Control Toolbox™ software temporarily
inserts output constraints at the inputs/outputs of the MPC block.

4 Finds a steady state operating condition based on the constraints or uses the
specified operating condition.

5 Linearizes the plant model about the operating point.

The linearized plant model appears as a new node under Plant Models. For
details of the linearization process, refer to the Simulink Control Design
documentation.
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Linearization Options

You can also customize the linearization process in several ways before clicking
OK:

¢ To specify an alternative name for the linearized plant model, enter the
name in the Linearization model name edit field.

¢ To use an alternative operating condition, you can:

= Select one from the menu next to Use the previously computed
operating condition. This list contains all operating conditions that exist
within the current project.

= Select Create a new operating condition from MPC I/O values to
compute an operating condition by optimization, using the nominal plant
values as constraints.

¢ To replace the nominal plant values with the operating point used in the
linearization, select the check box next to Replace the MPC nominal I/0
values with those derived from the operating condition.

¢ When there are multiple MPC blocks, use the Import to menu to select the
node within the Control and Estimation Tools Manager that will receive the
plant model.

In addition, the Linearization I/O tab displays the current linearization input
and output points in the model. When creating the linearized model, the Model
Predictive Control Toolbox software temporarily modifies these with input and
output points suitable for extracting a linearized plant model.



Importing a Confroller

Importing a Controller

To import a controller, do one of the following:

¢ Select the MPC/Import/Controller menu option.

¢ Select the MPC project/task node in the tree (see “Tree View” on page 5-7),
and then click the Import Controller button.

¢ Right-click the MPC project/task node and select the Import Controller
menu option.

¢ Ifyou've already designed a controller, select the Controllers node and then
click the Import button.

¢ If you've already designed a controller, right-click the Controllers node and
select the Import Controller menu option.

All of the above open the MPC Controller Importer dialog box. The following
sections describe the dialog box options:

¢ “Import from” on page 5-15
¢ “Import to” on page 5-17
¢ “Buttons” on page 5-17

Import from

Use these options to set the location from which the controller will be imported.
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MATLAB® Workspace

«): MPC Controller Importer =10 x|
Impart fram: ltems in your workspace:
' MATLAE workspace Yariable Name | Size | Bytes | Class |
 MAT-file & MPC1 131 11301 mpe

[AT=TilE name:

Erawase .. |

~Propertie

MPC object (created on 10-Jun-2005 10:49:52):
Sampling time: 1

Frediction Horizon: 10

Contral Horizon: 2

hodel:

Flant: [1:1 =]

Mominal: [1:1 struct]

Disturbance: N LI

Importta: | MPC Task - MPC Cortraller ¥ | Import | Close | Hel |

This is the default option and is the case shown in the above example. The
Items in your workspace area in the upper-right corner lists all MPC objects
in your workspace. Select one by clicking it. The Properties area lists the
properties of the selected model.
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MAT-File
The upper part of the dialog box changes as shown below.
«): MPC Controller Importer ] 5]

Impart fram: ltems in your MAT-file:

" MATLAE workspace Yariable Name | Size | Bytes | Class |

5 MAT-file & MPC1 131 13061  mpe

& MPC2 11 13061 mpe
MAT-file name:

Cortrollers mat

Erowze ... |

The MAT-file name edit box becomes active. Type the desired MAT-file name
here (if it’s not on the MATLAB® path, enter the complete file path). You can
also use the Browse button which opens a standard file chooser dialog box.

In the above example, file Controllers.mat contains two MPC objects. Their
names appear in the Items in your MAT-file area in the upper-right corner.

Import to

This allows you to specify the MPC task into which the controller will be
imported (see example below). It defaults to that most recently active.

[ggl<Delg RN | MPC Task - MPC Controller [ Impart | Cloze | Helg |

Buttons

Import

Select the controller you want to import from the Items list in the upper-right
corner. Verify that the Import to option designates the correct project/task.
Click the Import button to import the controller.

The new controller should appear in the tree as a subnode of Controllers. (See
“Tree View” on page 5-7.)

The imported controller contains a plant model, which appears in the Plant
models list. (See “Plant Models View” on page 5-26.)
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Note If the selected controller is incompatible with any others in the
designated project, the design tool will not import it.

Close
Click Close to close the dialog box. You can also click the Close icon on the title
bar.
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Exporting a Controller

To export a controller, do one of the following:

¢ Select the MPC/Export menu option.
¢ Select Controllers in the tree and click its Export button.

¢ In the tree, right-click Controllers and select the Export Controller menu
option.

¢ In the tree, right-click the controller you want to export and select the
Export Controller menu option.

All of the above open the MPC Controller Exporter dialog box (see example
below). The following sections describe the dialog box options:

¢ “Dialog Box Options” on page 5-19

* “Buttons” on page 5-20

«): MPC Controller Exporter i im] 5
Controller source: MPC Task - M.
Cantroller to export: I MPC1 vl
Mame to assign: IMPC1

& Export to MATLAB workspace

' Export to MAT-file

Export | Close | Help |

Dialog Box Options

The following sections describe the dialog box options.

Controller source

Use this to select the project/task containing the controller to be exported. It
defaults to the project/task most recently active.

Controller to export

Use this to specify the controller to be exported. It defaults to the controller
most recently selected in the tree.
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Name to assign

Use this to assign a valid MATLAB® variable name (no spaces). It defaults to
the selected controller’s name (with spaces removed, if any).

Export to MATLAB workspace

Select this option if you want the controller to be exported to the MATLAB
workspace.

Export to MAT-file
Select this option if you want the controller to be exported to a MAT-file.

Buttons

Export

If you've selected the Export to MATLAB workspace option, clicking Export
causes a new MPC object to be created in your MATLAB workspace. (If one
having the assigned name already exists, you'll be asked if you want to
overwrite it.) You can use the MATLAB whos command to verify that the
controller has been exported.

If you've selected the Export to MAT-file option, clicking Export opens a
standard file chooser that allows you to specify the file.

In either case, the dialog box remains visible, allowing you to export additional
controllers.

Close

Click Close to close the dialog box. You can also click the Close icon on the title
bar.



Signal Definition View

Signal Definition View

The signal definition view appears whenever you select a Model Predictive
Control Toolbox™ project/task node in the tree (see “Tree View” on page 5-7).
It is also the view you’ll see when you open the design tool for the first time. An

example appears below.

MPC structure overview
0 Measured 0
0 i;stu.rbalmceds Irauis Unrmeasured Cuthuts
Setpoints anipulate il
= MPC . Plant —=r
(reference) variahles 0 0
0 Unmeasured Measured
e e n——
disturbances 0
Impart Plant ... | Impaort Cortraller ... | Help |
Input signal properties
Marne Type | Description | Units Marninal
Qutput signal properies
Marne Type Description Units Marninal

The following sections describe the view’s main features:

¢ “MPC Structure Overview” on page 5-22

¢ “Buttons” on page 5-22

¢ “Signal Properties Tables” on page 5-22
¢ “Right-Click Menu Options” on page 5-24
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MPC Structure Overview

This upper section is a noneditable display of your application’s structure. Once
you’ve imported a plant model (or controller), the graphic shows counts for the
five possible signal types, as in the example below.

1 Measured 0
disturbances T
Setpoints 2 Manipulated Inputs Cutputs
(reference) MPC variahles 4 | Plant 3 !
1 Unreasured teasured

LI i
’—. disturbances 3

The counts will change if you edit the signal types.

Buttons

Import Plant

Clicking this opens the Plant Model Importer dialog box (see “Importing a
Plant Model” on page 5-9).

Import Controller

Clicking this opens the MPC Controller Importer dialog box (see “Importing a
Controller” on page 5-15).

Note You won't be allowed to proceed with your design until you import a
plant model. You can do so indirectly by importing a controller or loading a
saved project.

Signal Properties Tables
Two tables display the properties of each signal in your design.

Input Signal Properties
The plant’s input signals appear as table rows (see example below).



Signal Definition View

Input signal properties

Mame Type Description Units orminal
G_p Manipulated Feed flow rate ki 0.0
Gy Manipulated White water flow rate ki 0.0
M_p Meas. disturb, Feed consistency £ 0.0
[ _w Untess. disturb, White water consistency £ 0.0

The table’s columns are editable and have the following significance:

¢ Name — The signal name, an alphanumeric string used to label other tables,
graphics, etc. Each name must be unique. The design tool assigns a default
name if your imported plant model doesn’t specify one.

® Type — One of the three valid Model Predictive Control Toolbox input signal
types. The above example shows one of each. To change a signal’s type, click
the table cell and select the desired type from the resulting menu. The valid
signal types are as follows:

Manipulated — A signal that will be manipulated by the controller, i.e., an
actuator (valve, motor, etc.).

Measured Disturbance — An independent input whose value is measured

and used as a controller input for feedforward compensation.

Unmeasured Disturbance — An independent input representing an

unknown, unexpected disturbance.

¢ Description — An optional descriptive string.

¢ Units — Optional units (dimensions), a string. Used to label other dialog
boxes, simulation plots, etc.

¢ Nominal — The signal’s nominal value. The design tool defaults this to zero.
Any value you assign here will be the default initial condition in simulations.

Note Your design must include at least one manipulated variable. The other

input signal types need not be included.

Output Signal Properties
The plant’s output signals appear as table rows (see example below).
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Qutput signal properies

Marne Type Description Units Marninal
H_2 Measured Headhbox level l 0.0
M_1 Measured Feed tank consistency £ 0.0
M_2 Measured Head box consistency £ 0.0

The table’s columns are editable and have the following significance:

¢ Name — The signal name, an alphanumeric string used to label other tables,
graphics, etc. Each name must be unique. The design tool assigns a default
name if your imported plant model doesn’t specify one.

¢ Type — One of the two valid Model Predictive Control Toolbox output signal
types. The above example shows one of each. To change a signal’s type, click
the table cell and select the desired type from the resulting menu. The valid
signal types are as follows:

Measured — A signal the controller can use for feedback.

Unmeasured — Predicted by the plant model but unmeasured. Can be used
as an indicator. Can also be assigned a setpoint or constrained.

¢ Description — An optional descriptive string.

¢ Units — Optional units (dimensions), a string. Used to label other dialog
boxes, simulation plots, etc.

¢ Nominal — The signal’s nominal value. The design tool defaults this to zero.
Any value you assign here will be the default initial condition in simulations.

Note Your design must include at least one measured output. Inclusion of
unmeasured outputs is optional.

Right-Click Menu Options

Right-clicking on an MPC project/task node allows you to choose one of the
following menu items:

¢ Import Plant Model — Opens the Plant Model Importer dialog box (see
“Importing a Plant Model” on page 5-9)



Signal Definition View

¢ Import Controller — Opens the MPC Controller Importer dialog box (see
“Importing a Controller” on page 5-15).

¢ Clear Project — Erases all plant models, controllers, and scenarios in your
design, returning the project to its initial empty state.

¢ Delete Project — Deletes the selected project node.
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Plant Models View

Selecting Plant models in the tree dispays this view (see example below).

~ Plant models imported far this project
Sampling
Marne Type Pariod Imported an

10 7

DCp =5 1] 10-Jun-2005 12:13:54
Impart ... Delete | Help |

~ Model details
fodel name = DC -

Type = State space (z=5)
Mumber of inputz =3
Mumber of outputs =2
Order= 6
Sampling: Continuous
Input namegs):
fReflux Rate', 'Steam Rate', 'Feed Rate'}
Input groupgs):

v [4 2] x|

- Additional notes

The following sections describe the view’s main features:

¢ “Plant Models List” on page 5-27

¢ “Model Details” on page 5-27

¢ “Additional Notes” on page 5-28

¢ “Buttons” on page 5-28

¢ “Right-Click Options” on page 5-28
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Plant Models List

This table lists all the plant models you’ve imported and/or plant models
contained in controllers that you’ve imported. The example below lists two
imported models, DC and DCp.

Flant models imported far this project

Sampling
Period

Marne Type Imported an

I ss [10-Juin- 200 47
DCp =5 1] 10-Jun-2005 12:13:54

Impart ... | Delete | Help |

The Name field is editable. Each model must have a unique name. The name
you assign here will be used within the design tool, but will not alter the
original model’s name.

The Type field is noneditable and indicates the model’s LTI object type (see the
Control System Toolbox™ documentation for a detailed discussion of LTI
models).

The Sampling Period field is zero for continuous-time models, and a positive
real value for discrete-time models.

The Imported on field gives the date and time the model was imported into the
design tool.

Model Details

This scrollable viewport shows details of the model currently selected in the
plant models list (see “Plant Models List” on page 5-27). An example appears
below.
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Model details
Model name = DC o
Type = State space (z=5)
Mumber of inputz =3
Mumber of outputs =2
Order= 6
Sampling: Continuous
Input namegs):
fReflux Rate', 'Steam Rate', 'Feed Rate'}
Input groupgs):
v [4 2] x|

Additional Notes

You can use this editable text area to enter comments, distinguishing model
features, etc.

Buttons

Import

Opens the Plant Model Importer dialog box (see “Importing a Plant Model” on
page 5-9).

Delete

Deletes the selected model. If the model is being used elsewhere (i.e., in a
controller or scenario), the first model in the list replaces it (and a warning
message appears).

Right-Click Options
Right-clicking the Plant models node causes the following menu option to
appear.

Import Model

Opens the Plant Model Importer dialog box (see “Importing a Plant Model” on
page 5-9).
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Controllers View

Selecting Controllers in the tree displays this view (see example below).

~ Controllers defined in this project

Natne Piant Model BEmiE huedichicn Last Update
Interval Harizan
L i [10-Jun-2005 1213
hPC2 D 2 10 10-Jun-2005 12:24:01
Impart ... Export ... | e | Copy | Dizplay Delete | Help |

- Controller details

MPC object (created on 10-Jun—-2005 12:24:59) :

Sampling time: 1
Prediction Horizon: 15

Control Horizon: Z
-
4 | _’I_I

- Additional notes

The following sections describe the view’s main features:

¢ “Controllers List” on page 5-29

¢ “Controller Details” on page 5-30

e “Additional Notes” on page 5-31

¢ “Buttons” on page 5-31

¢ “Right-Click Options” on page 5-32

Controllers List

This table lists all the controllers in your project. The example below lists two
controllers, MPC1 and MPC2.
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Controllers defined in this project

Control Prediction

Marne Plant Mocel N Last Update
Interval Horizon

- 1 0-Jun-2005 12:13
hPC2 D 2 10 10-Jun-2005 12:24:01

Impart ... | Export ... | e | Copy | Delete | Help |

The Name field is editable. The name you assign here must be unique. You will
refer to it elsewhere in the design tool, e.g., when you use the controller in a
simulation scenario. Each listed controller corresponds to a subnode of
Controllers (see “Tree View” on page 5-7). Editing the name in the table will
rename the corresponding subnode.

The Plant Model field is editable. To change the selection, click the cell and
choose one of your models from the list. (All models appearing in the Plant
Models view are valid choices. See “Plant Models View” on page 5-26.)

The Control Interval field is editable and must be a positive real number. You
can also set it in the Controller Specifications view (see “Model and Horizons
Tab” on page 5-37 for more details).

The Prediction Horizon field is editable and must be a positive, finite integer.
You can also set in the Controller Specifications view (see “Model and Horizons
Tab” on page 5-37 for more details).

The noneditable Last Update field gives the date and time the controller was
most recently modified.

Controller Details

This scrollable viewport shows details of the controller currently selected in the
controllers list (see “Controllers List” on page 5-29). An example appears
below.



Controllers View

Controller details

-
MPC object (created on 10-Jun-zZ005 12:24:59): :j

Sampling time: 1
Prediction Horizon: 15

Control Hori=zon: 2
-
l | _'l_I

Note This view shows controller details once you have used the controller in
a simulation. Prior to that, it is empty. If necessary, you can use the Display
button to force the details to appear.

Additional Notes

You can use this editable text area to enter comments, distinguishing
controller features, etc.

Buttons

Import

Opens the MPC Controller Importer dialog box (see “Importing a Controller”
on page 5-15).

Export

Opens the MPC Controller Exporter dialog box (see “Exporting a Controller” on
page 5-19).

New

Creates a new controller specification subnode containing the default Model
Predictive Control Toolbox™ settings, and assigns it a default name.

Copy
Copies the selected controller, creating a controller specification subnode
containing the same controller settings, and assigning it a default name.
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Display

Calculates and displays details for the selected controller.

Delete

Deletes the selected controller. If the controller is being used elsewhere (i.e., in
a simulation scenario), the first controller in the list replaces it (and a warning
message appears).

Right-Click Options
Right-clicking the Controllers node causes the following menu options to
appear.

New Controller

Creates a new controller specification subnode containing the default Model
Predictive Control Toolbox settings, and assigns it a default name.

Import Controller

Opens the MPC Controller Importer dialog box (see “Importing a Controller”
on page 5-15).

Export Controller

Opens the MPC Controller Exporter dialog box (see “Exporting a Controller” on
page 5-19).
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Simulation Scenarios List
Selecting Scenarios in the tree causes this view to appear (see example below).

~ Simulation scenarios defined in this project

Controller Closed Loop Constrained Duration

MPC e v v 10

e | Copy | Delete | Help |

~ Scenario details

- Additional notes

The following sections describe the view’s main features:

® “Scenarios List” on page 5-34

® “Scenario Details” on page 5-35

¢ “Additional Notes” on page 5-35

¢ “Buttons” on page 5-35

¢ “Right-Click Options” on page 5-35
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Scenarios List

This table lists all the scenarios in your project. The example below lists two,
Scenarioi and Scenario?2.

Simulation scenarios defined in this project

Closed Loop Constrained Duration

Copy | Delete | Help |

The Name field is editable. The assigned name must be unique. Each listed
scenario corresponds to a subnode of Scenarios (see “Tree View” on page 5-7).
Editing the name in the table will rename the corresponding subnode.

The Controller field is editable. To change the selection, click the cell and
select one of your controllers from the list. (All controllers appearing in the
Controllers view are valid choices. See “Controllers View” on page 5-29.) You
can also set this using the Scenario Specifications view (for more discussion,
see “Simulation Scenario View” on page 5-59).

The Plant field is editable. To change the selection, click the cell and select one
of your plant models from the list. (All models appearing in the Plant Models
view are valid choices. See “Plant Models View” on page 5-26.) You can also set
this in the scenario specifications (for more discussion, see “Simulation
Scenario View” on page 5-59).

The Closed Loop field is an editable check box. If cleared, the simulation will
be open loop. You can also set it in the scenario specifications (for more
discussion see “Simulation Scenario View” on page 5-59).

The Constrained field is an editable check box. If cleared, the simulation will
ignore all constraints specified in the controller design. You can also set it in
the scenario specifications (for more discussion see “Simulation Scenario View”
on page 5-59).

The Duration field is editable and must be a positive, finite real number. It
sets the simulation duration. You can also set it in the scenario specifications
(for more discussion, see “Simulation Scenario View” on page 5-59).
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Scenario Details

This area is blank at all times.

Additional Notes

You can use this editable text area to enter comments, distinguishing scenario
features, etc.

Buttons

New

Creates a new scenario specification subnode containing the default Model
Predictive Control Toolbox™ settings, and assigns it a default name.

Copy
Copies the selected scenario, creating a scenario specification subnode
containing the same settings, and assigning it a default name.

Delete
Deletes the selected scenario.

Right-Click Options

Right-clicking the Scenarios node causes the following menu option to appear

New Scenario

Creates a new scenario specification subnode containing the default Model
Predictive Control Toolbox settings, and assigns it a default name.
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Controller Specifications View

This view appears whenever you select one of your controller specification

nodes (see “Tree View” on page 5-7). It allows you to specify or review controller
settings. It consists of four tabs, each devoted to a particular design aspect. All
settings have default values, but these might not be best for your application.

The following sections describe the view’s main features:

¢ “Model and Horizons Tab” on page 5-37
¢ “Constraints Tab” on page 5-40

“Constraint Softening” on page 5-42
® “Weight Tuning Tab” on page 5-46
¢ “Estimation Tab” on page 5-50

¢ “Right-Click Menus” on page 5-57
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Model and Horizons Tab

Flant madel: | DCp

Model and Horizons | Constraints | eight Tuning | Estimtion (Advanced) |

- Horizons
Control interval (time units):
Prediction horizon (intervals):

Control harizon (intervalz):

r Blocking

~ Blocking

Murnber of moves computed per steq:

Custam maove allocation vectar:

Elocking allocation swwithin prediction horizan:

I Beginning 'l
|3
|[ 235]

Help |

Plant Model

Flant madel: | DCp -

This combo box allows you to specify the plant model the controller uses for its
predictions. You can choose any of the plant models you've imported. (See

“Importing a Plant Model” on page 5-9.)
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Horizons
Harizans
Control interval (time units): |1 i)
Prediction horizon (intervals): |1 5
Control harizon (intervalz): |2

The Control interval option sets the elapsed time between successive
controller moves. It must be a positive, finite real number. The calculations
assume a zero-order hold on the manipulated variables (the signals adjusted
by the controller). Thus, these signals are constant between moves.

The Prediction horizon option sets the number of control intervals over which
the controller predicts its outputs when computing controller moves. It must be
a positive, finite integer.

The Control horizon option sets the number of moves computed. It must be a
positive, finite integer, and must not exceed the prediction horizon. Ifless than
the prediction horizon, the final computed move fills the remainder of the
prediction horizon.

For more discussion, see “T'ypical Sampling Instant” on page 1-4, and
“Prediction and Control Horizons” on page 1-7.

Blocking

Blocking

Blocking allocation swithin prediction horizon: I Beginning 'l
Murber of moves computed per step: |3
Custarn move allocstion vectar: I[ 23458]

By default, the Blocking option is cleared (off). When selected as shown above,
the design tool replaces the Control horizon specification (see “Horizons” on
page 5-38) with a move pattern determined by the following settings:
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¢ Blocking allocation within prediction horizon — Choices are:
Beginning — Successive moves at the beginning of the prediction horizon,
each with a duration of one control interval.
Uniform — The prediction horizon is divided by the number of moves and
rounded to obtain an integer duration, and each computed move has this
duration (the last move extends to fill the prediction horizon).
End — Successive moves at the end of the prediction horizon, each with a
duration of one control interval.
Custom — You specify the duration of each computed move.

¢ Number of moves computed per step — The number of moves computed
when the allocation setting is Beginning, Uniform, or End. Must be a
positive integer not exceeding the prediction horizon.

¢ Custom move allocation vector — The duration of each computed move,
specified as a row vector. In the example below, there are four moves, the
first lasting 1 control interval, the next two lasting 3, and the final lasting 8
for a total of 15. The Number of moves computed per step setting is
disabled (ignored).

Blocking

Blocking allocation swithin prediction horizon: I Custom 'l
Murnber of moves computed per steq: |3
Custom move allocstion vector: |[1 338]

The sum of the vector elements should equal the prediction horizon (15 in
this case). If not, the last move is extended or truncated automatically.

Note When Blocking is off, the controller uses the Beginning allocation
with Number of moves computed per step equal to the Control horizon.

For more discussion, see “Blocking” on page 1-13.
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Constraints Tab

This tab allows you to specify constraints (bounds) on manipulated variables
and outputs. Constraints can be hard or soft. By default, all variables are
unconstrained, as shown in the view below.

Model and Hotizons  Sonstraints | Wiight Tuningl Estimation (Advanced)l

— Constraints on manipulated variable

Marne Units Minirnum Maximurm Maix Doven Rate Maix Up Rate

Reflux Rate
Steam Rate

- Constraints on output variable

Mame Units Mdiniraum hdadimum
Distillate Purity
Eottoms Purity
Constraint Softening | Help |

Note If you specify constraints, manipulated variable constraints are hard
by default, whereas output variable constraints are soft by default. You can
customize this behavior, as discussed in the following sections. For additional
information on constraints, see “Optimization and Constraints” on page 1-9,
and “Optimization Problem” on page 2-5.
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Constraints on Manipulated Variables

The example below is for an application with two manipulated variables (MVs),
each represented by a table row.

Constraints on manipulated variables

Marne Units Minirnum Maximurm Maix Doven Rate Maix Up Rate
Feflux Rate 0 55 =10 10
Steam Rate ] a2

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The remaining table columns are editable. If you leave a cell blank, the
controller ignores that constraint. You can achieve the same effect by entering
-Inf (for a Minimum or Max down rate) or Inf (for a Maximum or Max up
rate).

The Minimum and Maximum values set each MV’s range.

The Max down rate and Max up rate values set the amount the MV can
change in a single control interval. The Max down rate must be negative or
zero. The Max up rate must be positive or zero.

Constraint values must be consistent with your nominal values (see “Input
Signal Properties” on page 5-22). In other words, each MV’s nominal value
must satisfy the constraints.

Constraint values must also be self-consistent. For example, an MV’s lower
bound must not exceed its upper bound.
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Constraints on Output Variables

The example below is for an application with two output variables, each
represented by a table row.

Constraints on output variables

Mame Units Mdiniraum hdadimum
Distillate Purity
Eottoms Purity

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The remaining table columns are editable. If you leave a cell blank (as above),
the controller ignores that constraint. You can achieve the same effect by
entering - Inf (for a Minimum) or Inf (for a Maximum).

Constraint values must be consistent with your nominal values (see “Output
Signal Properties” on page 5-23). In other words, each output’s nominal value
must satisfy the constraints.

Constraint values must also be self-consistent. For example, an output’s lower
bound must not exceed its upper bound.

Note Don’t constrain outputs unless this is an essential aspect of your
application. It is usually better to define output setpoints (reference values)
rather than constraints.

Constraint Softening

A hard constraint cannot be violated. Hard constraints are risky, especially for
outputs, because the controller will ignore its other objectives in order to satisfy
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them. Also, the constraints might be impossible to satisfy in certain situations,

in which case the controllers calculations are mathematically infeasible.

Model Predictive Control Toolbox™ software allows you to specify soft

constraints. These can be violated, but you specify a violation tolerance for each

constraint (the relaxation band). See the example specifications below.

«): MPC Constraint Softening

Specify relaxation bands

~ Input canstraints

To open this dialog box, click the Constraint softening button at the bottom of
the Contraints tab in the Controller Specification view (see “Constraints Tab”

on page 5-40).

Marne Units Minirnum Min Band Maximurm Maix Band | Max Dowwn... | Max Dowwn...| Max Up Rate | Max Up Ba...
Feflux Rate 0 55 -10 10
Steam Rate ] a2
~ Qutput constraints
Mame Units Mdiniraum hdin Band hdadimum e Band
Distillate Purity a0
Eottoms Purity
~ Overall constraint softhess
Soft constraints Hard constraints
1
| ! | ! | ! ! | ! | ! | ! | H | ! | ! |
Walue: ID.?S
Ok | Cancel | Help |
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Input Constraints
An example input constraint softening specification appears below.

Input canstraints

Marne Units Minirnum Min Band Maximurm Maix Band | Max Dowwn... | Max Dowwn...| Max Up Rate | Max Up Ba...
Feflux Rate 0 55 -10 10
Steam Rate ] 2 a2 2

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The Minimum, Maximum, Max down rate, and Max up rate columns are
editable. Their values are the same as on the main Constraints tab (see
“Constraints on Manipulated Variables” on page 5-41). You can specify them in
either location.

The remaining columns specify the relaxation band for each constraint. An
empty cell is equivalent to a zero, i.e., a hard constraint.

Entries must be zero or positive real numbers. To soften a constraint, increase
its relaxation band.

The example above shows a relaxation band of 2 moles/min for the steam flow
rate’s lower and upper bounds. The lack of a relaxation band setting for the
reflux flow rate’s constraints means that these will be hard.

Note The relaxation band is a relative tolerance, not a strict bound. In other
words, the actual constraint violation can exceed the relaxation band.
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Output Constraints
An example output constraint specification appears below.

Qutput constraints

Mame Units Mdiniraum hdin Band hdadimum e Band
Distillate Purity a0 0.5
Eiottoms Purity 93 @2

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The Minimum and Maximum columns are editable. Their values are the same
as on the main Constraints tab (see “Constraints on Output Variables” on
page 5-42). You can specify them in either location.

The remaining columns specify the relaxation band for each constraint. An
empty cell is equivalent to 1.0, i.e., a soft constraint.

Entries must be zero or positive real numbers. To soften a constraint, increase
its relaxation band.

The example above shows a relaxation band of 0.5 mole % for the distillate
purity lower bound, and a relaxation band of 2 mole % for the bottoms purity
lower bound (the softer of the two constraints).

Note The relaxation band is a relative tolerance, not a strict bound. In other
words, the actual constraint violation can exceed the relaxation band.
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Overall Constraint Softness

The relaxation band settings allow you to adjust the hardness/softness of each
constraint. You can also soften/harden all constraints simultaneously using the
slider at the bottom of the dialog box pane.

Overall constraint sofiness
Soft constraints Hard constraints

| ! | ! | ! | ! | ! | ! | ! | H | ! | ! |
Walue: ID.?S

You can move the slider or edit the value in the edit box, which must be
between 0 and 1.

Buttons
OK - Closes the constraint softening dialog box, implementing changes to the
tabular entries or the slider setting.

Cancel — Closes the constraint softening dialog box without changing
anything.

Weight Tuning Tab

The example below shows the Model Predictive Control Toolbox default tuning
weights for an application with two manipulated variables and two outputs.
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Reflux Rate holar reflux rate kmalimin
Steam Rate Steam heating rate krnolfmin

Distillate Purity Distillate product purity ol % |
Eottoms Purity Bottoms product purity ol %

The following sections discuss the three tab areas in more detail. For additional
information, see “Optimization Problem” on page 2-5.
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Input Weights
Input weights
Marne Description Units Weight Rate Wieight
Reflux Rate holar reflux rate kmalimin o 0.1
Steam Rate Steam heating rate krnolfmin 0 0.1

The Name, Description, and Units columns are noneditable. To change them,
use the signal definition view. (See “Signal Definition View” on page 5-21. Any
changes there apply to the entire design.)

The Weight column sets a penalty on deviations of each manipulated variable
(MV) from its nominal value. The weight must be zero or a positive real
number. The default is zero, meaning that the corresponding MV can vary
freely provided that it satisfies its constraints (see “Constraints on
Manipulated Variables” on page 5-41).

A large Weight discourages the corresponding MV from moving away from its
nominal value. This can cause steady state error (offset) in the output variables
unless you have extra MVs at your disposal.

Note To set the nominal values, use the signal definition view. (See “Signal
Definition View” on page 5-21. Any changes there apply to the entire design.)

The Rate Weight value sets a penalty on MV changes, i.e., on the magnitude
of each MV move. Increasing the penalty on a particular MV causes the
controller to change it more slowly. The table entries must be zero or positive
real numbers. These values have no effect in steady state.
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Output Weights
Qutput weights
Marne Description Units Weight
Distillate Purity Distillate product purity ol % 1.0
Eottoms Purity Bottoms product purity ol % 1.0

The Name, Description, and Units columns are noneditable. To change them,
use the signal definition view. (See “Signal Definition View” on page 5-21. Any
changes there apply to the entire design.)

The Weight column sets a penalty on deviations of each output variable from
its setpoint (or reference) value. The weight must be zero or a positive real
number.

A large Weight discourages the corresponding output from moving away from
its setpoint.

Ifyou don’t need to hold a particular output at a setpoint, set its Weight to zero.
This may be the case, for example, when an output doesn’t have a target value
and is being used as an indicator variable only.

Overall (Slider Control)

Overall

More robust Faster response

TR

Walue: ID.S

The slider adjusts the weights on all variables simultaneously. Moving the
slider to the left increases rate penalties relative to setpoint penalties, which
often (but not always!) increases controller robustness. The disadvantage is
that disturbance rejection and setpoint tracking become more sluggish.

You can also change the value in the edit box. It must be a real number between
0 and 1. The actual effect is nonlinear. You will generally need to run trials to
determine the best setting.
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Estimation Tab

Use these specifications to shape the controller’s response to unmeasured
disturbances and measurement noise.

The example below shows Model Predictive Control Toolbox default settings for
an application with two output variables and no unmeasured disturbance
inputs.

Madel and Horizons I Constraints | Weight Tuning

Overall estimatar gain

Loy gain High gain
1
| ! | ! | ! | ! | ! K ! | ! | ! | ! | ! |
Walue: ID.S
Output Disturhances Measuremert Noise |
Marne Units | Type Magnitude
Distillate Purity ol % |Steps 1.0
Eottoms Purity ol % |Steps 1.0

& Signal-by-signal

LTI model in workspace Erowvse ... |

Unmeasured
Disturbance
+

Outputs

Estimation parameters: MPC defaults Use MPC Defaults | Help |

The following sections cover each estimation feature in detail. For additional
information, see “Estimating States from Measured Data” on page 1-12 for an
introduction, and “State Estimation” on page 2-9 for detailed information.
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Button (MPC Default Settings)

If you edit any of the Estimation tab settings, the display near the top will
appear as follows.

Estimation parameters: user-specified Use MPC Defaults |

To return the settings to the default state, click the Use MPC Defaults button,
causing the display to revert to the default condition shown below.

Estimation parameters: MPC defaults

Overall Estimator Gain

Overall estimatar gain
Loy gain High gain

1
| ! | ! | ! | ! | ! K ! | ! | ! | ! | ! |
Walue: ID.S

This slider determines the controller’s overall disturbance response. As you
move the slider to the left, the controller responds less aggressively to
unexpected changes in the outputs, i.e., it assumes that such changes are more
likely to be caused by measurement noise rather than a real disturbance.

You can also change the value in the edit box. It must be between zero and 1.
The effect is nonlinear, and you might need to run trial simulations to achieve
the desired result.
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Output Disturbances

Use these settings to model unmeasured disturbances adding to the plant
outputs.

The example below shows the tab’s appearance with the Signal-by-signal
option selected for an application having two plant outputs.

Output Disturbances | I Messurement Moise I

Marne Units | Type Magnitude
Distillate Purity ol % |Steps 1.0
Eottoms Purity ol % |Steps 1.0

& Signal-by-signal

LTI model in workspace Erowvse ... |
Unmeasured
Disturbance
+
Outputs

The graphic shows the disturbance location.

Use the table to specify the disturbance character for each output.

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The Type column sets the disturbance character. To edit this, click the cell and
select from the resulting menu. You have the following options:
¢ Steps — Simulates random step-like disturbances (integrated white noise).

¢ Ramps — Simulates a random drifting disturbance (doubly-integrated white
noise).

¢ White — White noise.
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The Magnitude column specifies the standard deviation of the white noise
assumed to create the disturbance. Set it to zero if you want to turn off a
particular disturbance.

For example, if Type is Steps and Magnitude is 2, the disturbance model is
integrated white noise, where the white noise has a standard deviation of 2.

If these options are too restrictive, select the LTI model in workspace option.
The tab appearance changes to the view shown below.

Output Disturbances | I Messurement Moise I

Marne | Units Type Magnitude

" Signal-by-signal

& LTI model in weorkspace  |myCutDisthoce] Browrse ... |

White
—™ Model

noise
+
—» Qutputs

You must specify an LTI output disturbance model residing in your workspace.
The Browse button opens a dialog box listing all LTI models in your
workspace, and allows you to choose one. You can also type the model name in
the edit box, as shown above.

The model must have the same number of outputs as the plant.

The white noise entering the model is assumed to have unity standard
deviation.
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Input Disturbances

Use these settings to model disturbances affecting the plant’s unmeasured
disturbance inputs.

Note This option is available only if your plant model includes unmeasured
disturbance inputs.

The example below shows the tab’s appearance with the Signal-by-signal
option selected for a plant having one unmeasured disturbance input. The
graphic shows the disturbance location.

Marne | Units | Type | Magnitude |
Feed Rate [kenolinin |steps [1.0 |

& Signal-by-signal

LTI model in workspace Erowvse ... |

Unmeasured
Disturbance ’

Estimation parameters: MPC defaults Use MPC Defaults | Help |

Use the table to specify the character of each unmeasured disturbance input.

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The Type column sets the disturbance character. To edit this, click the cell and
select from the resulting menu. You have the following options:
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® Steps — Simulates random step-like disturbances (integrated white noise).

¢ Ramps — Simulates a random drifting disturbance (doubly-integrated white
noise).

® White — White noise.

The Magnitude column specifies the standard deviation of the white noise
assumed to create the disturbance. Set it to zero if you want to turn off a

particular disturbance.

For example, if Type is Steps and Magnitude is 2, the disturbance model is
integrated white noise, where the white noise has a standard deviation of 2.

If the above options are too restrictive, select the LTI model in workspace
option. The tab appearance changes to the view shown below.

Cutput Disturbances  Input Disturbances | Measurement MNoise I

Marne | Units Type Magnitude

" Signal-by-signal

& LTI model in weorkspace  [MylnDistModel Browrse ... |

Whﬂg' Disturbance | UD
noise model

You must specify an LTI disturbance model residing in your workspace. The
Browse button opens a dialog box listing all LTI models in your workspace,
and allows you to choose one. You can also type the model name in the edit box,

as shown above.

The number of model outputs must equal the number of plant unmeasured
disturbance inputs. The white noise entering the model is assumed to have
unity standard deviation.
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Noise
Use these settings to model noise in the plant’s measured outputs.

The example below shows the tab’s appearance with the Signal-by-signal
option selected for a plant having two measured outputs. The graphic shows
the noise location.

Marne Units Type Magnitude
Distillate Purity ol % WWhite: 1.0
Eottoms Purity ol % WWhite: 1.0

& Signal-by-signal

LTI model in workspace Erowvse ... |

Measurement
noise

+ Measured
Outputs

Use the table to specify the character of each noise input.

The Name and Units columns are noneditable. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes there
apply to the entire design.)

The Type column sets the noise character. To edit this, click the cell and select
from the resulting menu. You have the following options:

® White — White noise.
¢ Steps — Simulates random step-like disturbances (integrated white noise).

The Magnitude column specifies the standard deviation of the white noise
assumed to create the noise. Set it to zero if you want to specify that an output
is noise-free.
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For example, if Type is Steps and Magnitude is 2, the noise model is
integrated white noise, where the white noise has a standard deviation of 2.

If the above options are too restrictive, select the LTI model in workspace
option. The tab appearance changes as follows.

Output Disturbances I Input Disturbances  Measurement Moise |

Marne | Units Type Magnitude

" Signal-by-signal

& LTI model in weorkspace  [MyMoisehodel Browrse ... |

White
noise

—» Model

%"' Measured

Outputs

You must specify an LTI model residing in your workspace. The Browse button
opens a dialog box listing all LTI models in your workspace, and allows you to

choose one. You can also type the model name in the edit box, as shown above.

The number of noise model outputs must equal the number of plant measured
outputs.

The white noise entering the model is assumed to have unity standard
deviation.

Right-Click Menus

Copy Controller

Creates a new controller having the same settings and a default name.
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Delete Controller

Deletes the controller. If the controller is being used in a simulation scenario,
the design tool replaces it with the first controller in your list, and displays a
warning message.

Rename Controller
Opens a dialog box allowing you to rename the controller.

Note Each controller in a design project/task must have a unique name.

Export Controller

Opens the MPC Controller Exporter dialog box (see “Exporting a Controller” on
page 5-19).
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Simulation Scenario View

This view appears whenever you select one of your scenario specification nodes
(see “Tree View” on page 5-7). It allows you to specify simulation settings and
independent variables. All have default values, but you will want to change at
least some of them (otherwise all independent variables will be constant).
Defaults for a plant with three inputs and two outputs appears below.

~ Simulation settings

Controller IMPC1 'l Close loops v
Plart | DC e Enforce constrairts [

Duration |1 o Contraol interval 1

~ Setpoints
Marne Units Type Initial %' alue Size Time: Period Look &head
Distillate Purity  [mal % Constant 0.0 [l
Bottoms Purity  [mal % Constant 0.0 [l

 Measured disturbance

Marne Units Type Initial %' alue Size Time: Period Look &head
Steam Rate |kmalimin Constart 0.0 r

~ Unmeasured disturbance

Marne Units Type Initial %' alue Size Time: Period
Feed Rate kmalimin Constant 0.0
Distillate Purity ol % Constant 0.0
Eottoms Purity ol % Constant 0.0
Reflux Rate kmalimin Constant 0o

Simulate: | Help |

The middle table won’t appear unless you have designated at least one input
signal to be a measured disturbance.

The following sections describe the view’s main features:

¢ “Model and Horizons Tab” on page 5-37
¢ “Simulation Settings” on page 5-60
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® “Setpoints” on page 5-60
¢ “Measured Disturbances” on page 5-61

¢ “Unmeasured Disturbances” on page 5-62

“Signal Type Settings” on page 5-64

“Simulation Button” on page 5-65
¢ “Right-Click Menus” on page 5-65

Simulation Settings

Simulation settings

Controller I MPC 'l Close loops v
Flarit I DC 'l Enforce constrairts [
Duration |1 o Contraol interval 1

Use this section to set the following:

¢ Controller — Select one of your controllers,

¢ Plant — Select the plant model that will act as the “real” plant in the
simulation, i.e., it need not be the same as that used for controller
predictions.

¢ Duration — The simulation duration in time units.
¢ Close loops — If cleared, the simulation will be open-loop.

¢ Enforce Constraints — If cleared, all controller constraints will be ignored.

The Control interval field is display-only, and reflects the setting in your
Controller selection. You can change it there if necessary (see “Model and
Horizons Tab” on page 5-37).

Setpoints

Note Setpoint specifications affect closed-loop simulations only.

Use this table to specify the setpoint for each output. In the example below,
which is for an application having two plant outputs, the first would be
constant at 0.0, and the second would change step-wise.
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Setpoints

Marne Units Type Initial %' alue Size Time: Period Look &head
Distillate Purity  [mal % Constant 0.0 [l
Bottoms Purity  [mal % Step 0.0 1.0 1.0 [l

The Name and Units columns are display-only. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes apply
to the entire design.)

The Type column specifies the setpoint variation. To change this, click the cell
and select a choice from the resulting menu.

The significance of the Initial Value, Size, Time, and Period columns depends
on the Type. If a cell is gray (noneditable), it doesn’t apply to the Type you’ve
chosen.

For details on the signal types, see “Signal Type Settings” on page 5-64.

If the Look Ahead option is selected (i.e., on), the controller will use future
values of the setpoints in its calculations. This improves setpoint tracking, but
knowledge of future setpoint changes is unusual in practice.

Note In the current implementation, selecting or clearing the Look ahead
option for one output will set the others to the same state. Model Predictive
Control Toolbox™ code does not allow you to Look ahead for some outputs but
not for others.

Measured Disturbances

Use this table to specify the variation of each measured disturbance. In the
example below, which is for an application having a single measured
disturbance, the “Steam Rate” input would be constant at 0.0.

Measured disturbances

| Marne | Units | Type | Initial %' alue | Size | Time: | Period | Look &head |
|Steam Rate kmoliin [Canstart o0 | | | | r |
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The Name and Units columns are display-only. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes apply
to the entire design.)

The Type column specifies the disturbance variation. To change this, click the
cell and select a choice from the resulting menu.

The significance of the Initial Value, Size, Time, and Period columns depends
on the Type. If a cell is gray (noneditable), it doesn’t apply to the Type you've
chosen.

For details on the signal types, see “Signal Type Settings” on page 5-64.

If the Look Ahead option is selected (i.e., on), the controller will use future
values of the measured disturbance(s) in its calculations. This improves
disturbance rejection, but knowledge of future disturbances is unusual in
practice. It has no effect in an open-loop simulation.

Note In the current implementation, selecting or clearing the Look ahead
option for one input will set the others to the same state. Model Predictive
Control Toolbox™ code does not allow you to Look ahead for some inputs but
not for others.

Unmeasured Disturbances

Use this table to specify the variation of each measured unmeasured
disturbance. In the example below, all would be constant at 0.0.

Unmeasured disturbances

Mame Units Type Initial %alue Size Time Period
Feed Rate kmalimin Constant 0.0
Distillate Purity ol % Constant 0.0
Eottoms Purity ol % Constant 0.0
Reflux Rate kmalimin Constant 0o

Unmeasured Disturbance Locations
You can simulate an unmeasured disturbance in any of the following locations:

¢ The plant’s unmeasured disturbance (UD) inputs (if any)
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¢ The plant’s measured outputs (MO)
¢ The plant’s manipulated variable (MV) inputs

All of the above will appear as rows in the table. In the case of a measured
output or manipulated variable, the disturbance is an additive bias.

The Name and Units columns are display-only. To change them, use the signal
definition view. (See “Signal Definition View” on page 5-21. Any changes apply
to the entire design.)

The Type column specifies the disturbance variation. To change this, click the
cell and select a choice from the resulting menu.

The significance of the Initial Value, Size, Time, and Period columns depends
on the Type. If a cell is gray (noneditable), it doesn’t apply to the Type you've
chosen.

For details on the signal types, see “Signal Type Settings” on page 5-64.

Open-Loop Simulations
For open-loop simulations, you can vary the MV unmeasured disturbance to
simulate the plant’s response to a particular MV. The MV signal coming from

the controller stays at its nominal value, and the MV unmeasured disturbance
adds to it.

For example, suppose Reflux Rate is an MV, and the corresponding row in the
table below represents an unmeasured disturbance in this MV.

Unmeasured disturbances

Mame Units Type Initial %alue Size Time Period
Feed Rate kmalimin Constant 0.0
Distillate Purity ol % Constant 0.0
Eottoms Purity ol % Constant 0.0
Reflux Rate kmalimin Constant 0o

You could set it to a constant value of 1 to simulate the plant’s open-loop
unit-step response to the Reflux Rate input. (In a closed-loop simulation,
controller adjustments would also contribute, changing the response.)

Similarly, an unmeasured disturbance in an MO adds to the output signal
coming from the plant. If there are no changes at the plant input, the plant
outputs are constant, and you see only the change due to the disturbance. This
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5-64

allows you to check the disturbance character before running a closed-loop
simulation.

Signal Type Settings

The table below is an example that uses five of the six available signal types
(the Constant option has been illustrated above). The cells with white
backgrounds are the entries you must supply. All have defaults.

Marne Units | Type Initial %' alue Size Time: Period
Distillate Purity ol % |Step 0.0 1.0 1.0
Eottoms Purity ol % |Ramp 0.0 1.0 1.0
Reflux Rate kmalimin |Sine 0.0 1.0 0.0 1.0
Steam Rate kmalimin |Pu|se 0.0 1.0 0.0 1.0
!Feed Rate kmolimin |Gaussian i 10 10
Constant

The signal will be held at the specified Initial Value for the entire simulation.

y =yo fort=0

Step

Prior to Time, the signal = Initial Value. At Time, the signal changes
step-wise by Size units. Its value thereafter = Initial Value + Size.

y =y for 0<t<t, where y, = Initial Value, ¢, = Time

y =yo+M for t >t, where M = Size

Ramp

Prior to Time, the signal = Initial Value. At Time, the signal begins to vary
linearly with slope Size.

y =y for 0<t<t, where y, = Initial Value, ¢, = Time
y =yo+tM(t-ty) for t>t, where M = Size
Sine

Prior to Time, the signal = Initial Value. At Time, the signal begins to vary
sinusoidally with amplitude Size and period Period.
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y =y for 0<t<t, where y, = Initial Value, ¢, = Time
Yy =yo+Msin[o(t-ty)] for t >t, where M = Size, ® = 2n/Period
Pulse

Prior to Time, the signal = Initial Value. At Time, a square pulse of duration
Period and magnitude Size occurs.

y =y for 0<t<t, where y, = Initial Value, ¢) = Time
y =yo+M for ty<t<ty+T where M = Size, T = Period
y =yo fort=>ty+T

Gaussian

Prior to Time, the signal = Initial Value. At Time, the signal begins to vary
randomly about Initial Value with standard deviation Size.

y =y for 0<t<t, where y, = Initial Value, t) = Time
Yy =yo+Mrandn for ¢t >¢, where M = Size

randn is the MATLAB® random-normal function, which generates random
numbers having zero mean and unit variance.

Simulation Button

Click the Simulate button to simulate the scenario. You can also press Ctrl+R,
use the toolbar icon (see “Toolbar” on page 5-6), or use the MPC/Simulate
menu option (see “Menu Bar” on page 5-3).

Right-Click Menus

Copy Scenario

Creates a new simulation scenario having the same settings and a default
name.

5-65



S Reference for the Design Tool GUI

Delete Scenario
Deletes the scenario.

Rename Scenario
Opens a dialog box allowing you to rename the scenario.

Note Each scenario in a design project/task must have a unique name.
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Response Plots

Each time you simulate a scenario, the design tool plots the corresponding
plant input and output responses. The graphic below shows such a response
plot for a plant having two outputs (the corresponding input response plot is
not shown).

Plant Outputs

T,DegC
1

c,, kmolir?®

1] 5] 10 15 20 25 30
Time (zec)

By default, each plant signal plots in its own graph area (as shown above). If
the simulation is closed loop, each output signal plot include the corresponding
setpoint.

The following sections describe response plot customization options:

¢ “Data Markers” on page 5-67

¢ “Displaying Multiple Scenarios” on page 5-69

* “Viewing Selected Variables” on page 5-70

¢ “Grouping Variables in a Single Plot” on page 5-70
¢ “Normalizing Response Amplitudes” on page 5-71

Data Markers

You can use data markers to label a curve or to display numerical details.
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Adding a Data Marker

To add a data marker, click the desired curve at the location you want to mark.
The following graph shows a marker added to each output response and its
corresponding setpoint.

Plant Outputs
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53
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= Input: T Setpoint
u Time (sec) 133
05+ i ! /
Response: Disturbance Amplituce: 1
Output: T
a Time (zec): 4.48 I L I L
15 i — Ampltude: 061 . . . .
1r -
'E 05+ o i
E u] n Responze: Disturbance
- .
& Input: C_A Setpaint Output: C_&
A3 Time (sec) 6.33 Time (zec) 16.2
RN Amplitude: 0 Amplitude: 0.348
-1.5 L L L L I I

1] 2 4 G g 10 12 14 16 18 20
Time (zec)

Data Marker Contents
Each data marker provides information about the selected point, as follows:

® Response — The scenario that generated the curve.

¢ Time — The time value at the data marker location.

¢ Amplitude — The signal value at the data marker location.
¢ Output — The plant variable name (plant outputs only).

¢ Input — Variable name for plant inputs and setpoints.

Changing a Data Marker’s Alignment

To relocate the data marker’s label (without moving the marker), right-click
the marker, and select one of the four Alignment menu options. The above
example shows three of the possible four alignment options.
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Relocating a Data Marker

To move a marker, left-click it (holding down the mouse key) and drag it along
its curve to the desired location.

Deleting Data Markers
To delete all data markers in a plot, click in the plot’s white space.

To delete a single data marker, right-click it and select the Delete option.

Right-Click Options

Right-click a data marker to use one of the following options:

¢ Alignment — Relocate the marker’s label.

® Font Size — Change the label’s font size.

® Movable — On/off option that makes the marker movable or fixed.
® Delete — Deletes the selected marker.

¢ Interpolation — Interplolate linearly between the curve’s data points, or
locate at the nearest data point.

® Track Mode — Changes the way the marker responds when you drag it.

Displaying Multiple Scenarios

By default the response plots include all the scenarios you’ve simulated. The
example below shows a response plot for a plant with two outputs. The data
markers indicate the two scenarios being plotted: “Accurate Model” and
“Perturbed Model”. Both scenarios use the same setpoints (not marked — the
lighter solid lines).

Viewing Selected Scenarios
If your plots are too cluttered, you can hide selected scenarios. To do so:

¢ Right-click in the plot’s white space.
¢ Select Responses from the resulting context menu.

® Toggle a response on or off using the submenu.

Note This selection affects all variables being plotted.
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Plant Outputs
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Revising a Scenario

If you modify and recalculate a scenario, its data are replotted, replacing the
original curves.

Viewing Selected Variables

By default, the design tool plots all plant inputs in a single window, and plots
all plant outputs in another. If your application involves many signals, the
plots of each may be too small to view comfortably.

Therefore, you can control the variables being plotted. To do so, right-click in a
plot’s white space and select Channel Selector from the resulting menu. A
dialog box appears, on which you can opt to show or hide each variable.

Grouping Variables in a Single Plot

By default, each variable appears in its own plot area. You can instead choose
to display variables together in a single plot. To do so, right-click in a plot’s
white space, and select Channel Grouping, and then select All.

To return to the default mode, use the Channel Grouping: None option.
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Normalizing Response Amplitudes

When you’re using the Channel Grouping: All option, you might find that the
variables have very different scales, making it difficult to view them together.
You can choose to normalize the curves, so that each expands or contracts to fill
the available plot area.

For example, the plot below shows two plant outputs together (Channel
Grouping: All option). The outputs have very different magnitudes. When
plotted together, it’s hard to see much detail in the smaller response.

Plant Outputs
T
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Output: T
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The plot below shows the normalized version, which displays each curve’s
variations clearly.

The y-axis scale is no longer meaningful, however. If you want to know a
normalized signal’s amplitude, use a data marker (see “Adding a Data Marker”
on page 5-68). Note that the two data markers on the plot below are at the same
normalized y-axis location, but correspond to very different amplitudes in the
original (unnormalized) coordinates.
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Plant Outputs
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Function Reference (p. 6-2) A list of available functions, sorted by category

Functions — Alphabetical List (p. 6-5) A list of available functions, sorted alphabetically



6 Function Reference

Function Reference

General

Function Name Description

mpcprops Provide help on MPC controller’s properties
mpchelp MPC property and function help
mpcverbosity Change toolbox verbosity level

Creating MPC Controllers

Function Name Description

mpc Create MPC controller

set Set/modify MPC controller properties
setestim Modify an MPC object’s linear state estimator
setoutdist Modify unmeasured output disturbance model
setindist Modify unmeasured input disturbance model
mpcstate Define state for MPC controller
setmpcsignals Set signal types in MPC plant model

setname Set I/0 signal names in MPC prediction model

Data Extraction

Function Name Description

get Access/query property values

getestim Extract model and gain used for observer design
getoutdist Retrieve unmeasured output disturbance model
getindist Retrieve unmeasured input disturbance model
getname Get I/0 signal names in MPC prediction model
size Display model output/input/disturbance dimensions
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Conversions

Function Name

Ss
tf
zpk

d2d
pack

Analysis
Function Name
mpcmove

sim

plot
mpcsimopt
cloffset

trim

compare

Description

Convert unconstrained MPC controller to state-space
linear form

Convert unconstrained MPC controller to linear
transfer function

Convert unconstrained MPC controller to
zero/pole/gain form

Change MPC controller’s sampling time

Reduce size of MPC object in memory

Description
Compute MPC control action

Simulate closed-loop/open-loop response to arbitrary
reference and disturbance signals

Plot responses generated by MPC simulations
Specify MPC simulation options

Compute MPC closed-loop DC gain from output
disturbances to measured outputs assuming
constraints are inactive at steady state

Compute steady-state value of MPC controller state
for given inputs and outputs values

Compare two MPC objects

Controller Design

Function Name

mpctool

Description

Start mpctool GUI
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QP solver

Function Name Description

gpdantz Solve convex quadratic program using
Dantzig-Wolfe’s algorithm

Simulink

Function Name Description

mpclib Open MPC block library



Functions — Alphabetical List

Functions — Alphabetical List

This section contains function reference pages listed alphabetically.
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cloffset

Purpose

Syntax

Description

6-6

Compute MPC closed-loop DC gain from output disturbances to measured
outputs assuming constraints are inactive at steady state

DCgain=cloffset (MPCobj)

The cloff function computes the DC gain from output disturbances to
measured outputs, assuming constraints are not active, based on the feedback
connection between Model.Plant and the linearized MPC controller, as
depicted below.

Constant
- Measured Disturbances Unmeasured
> Disturbances
(K}
- Unmeasured Disturbances P]ant 4 X Measured Outputs
' " >
dik) Von (K)
model
Manipulated Variables
ulk)

MPC
Controller

(linearized) References - -
(k) .

Computing the Effect of Output Disturbances

By superposition of effects, the gain is computed by zeroing references,
measured disturbances, and unmeasured input disturbances.

DCgain=cloffset (MPCobj) returns an n,,,-by-n,, DC gain matrix DCgain,
where n,,,, is the number of measured plant outputs. MPCobj is the MPC object
specifying the controller for which the closed-loop gain is calculated.
DCgain(i,j) represents the gain from an additive (constant) disturbance on
output j to measured output i. If row i contains all zeros, there will be no
steady-state offset on output i.
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Exumples See misocloffset.min mpcdemos.

See Also mpc, ss



compare

Purpose
Syntax

Description

See Also

6-8

Compare two MPC objects
yesno=compare (MPC1,MPC2)
The compare function compares the contents of two MPC objects MPC1, MPC2. If

the design specifications (models, weights, horizons, etc.) are identical, then
yesno is equal to 1.

Note compare may return yesno=1 even if the two objects are not identical.
For instance, MPC1 may have been initialized while MPC2 may have not, so that
they may have different sizes in memory. In any case, if yesno=1 the behavior
of the two controllers will be identical.

mpc, pack



d2d

Purpose
Syntax

Description

See Also

Change MPC controller’s sampling time

MPCobj=d2d (MPCobj,ts)

The d2d function changes the sampling time of the MPC controller MPCobj to
ts. All models are sampled or resampled as soon as the QP matrices must be

computed, e.g., when sim or mpcmove are used.

mpc, set
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Purpose

Syntax

Description

Remark

See Also

6-10

MPC property values

Value = get(MPCobj, 'PropertyName')
get (MPCobj)
Struct = get(MPCobj)

Value = get(MPCobj, 'PropertyName') returns the current value of the
property PropertyName of the MPC controller MPCobj. The string
'PropertyName’ can be the full property name (for example, 'UserData') or
any unambiguous case-insensitive abbreviation (for example, 'user'). You can
specify any generic MPC property.

Struct = get(MPCobj) converts the MPC controller MPCobj into a standard
MATLAB® structure with the property names as field names and the property
values as field values.

get (MPCobj) without a left-side argument displays all properties of MPCobj and
their values.
An alternative to the syntax
Value = get(MPCobj, 'PropertyName')
is the structure-like referencing
Value = MPCobj.PropertyName
For example,

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the MPC
controller MPCobj.

mpc, set
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Purpose

Syntax

Description

Model and gain for observer design

M=getestim(MPCobj)
[M,A,Cm]=getestim(MPCobj)
[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)
[M,model,Index]=getestim(MPCobj, 'sys"')

M=getestim(MPCobj) extracts the estimator gain M used by the MPC controller
MPCobj for observer design. The observer is based on the models specified in
MPCobj.Model.Plant, in MPCobj.Model.Disturbance, by the output
disturbance model (default is integrated white noise, see “Output Disturbance
Model” on page 2-10), and by MPCobj.Model.Noise.

The state estimator is based on the linear model (see “State Estimation” on
page 2-9)

x(k+1) = Ax(k) + B, u(k) + B v(k)
Ym(R) = C, x(k)+D, v(k)

where v(k) are the measured disturbances, u(%) are the manipulated plant
inputs, y,,(k) are the measured plant outputs, and x(%) is the overall state
vector collecting states of plant, unmeasured disturbance, and measurement
noise models.

The estimator used in the Model Predictive Control Toolbox™ software is
described in “State Estimation” on page 2-9. The estimator’s equations are

Predicted Output Computation:
Y (klk=1) = C, x(k|lk—1)+D, v(k)

Measurement Update:
x(k|k) = x(k|k—1)+M(y,, (k) =y, (k|k-1))

Time Update:
x(k+1|k) = Ax(k|k))+B,u(k)+B,v(k)
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By combining these three equations, the overall state observer is
x(k+1|k) = (A-LC,)x(k|k)+Ly,, (k) +B,u(k)+(B,-LD,, (k)

where L=AM.

[M,A,Cm]=getestim(MPCobj) also returns matrices A,C,, used for observer
design. This includes plant model, disturbance model, noise model, offsets. The
extended state is

x=plant states; disturbance models states; noise model states]

[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj) retrieves the whole linear system
used for observer design.

[M,model, Index]=getestim(MPCobj, 'sys') retrieves the overall model used
for observer design (specified in the Model field of the MPC object) as an LTI
state-space object, and optionally a structure Index summarizing I/O signal

types.

The extended input vector of model model is

u=[manipulated vars;measured disturbances; 1; noise exciting disturbance
model;noise exciting noise model]

Model model has an extra measured disturbance input v=1 used for handling
possible nonequilibrium nominal values (see “Offsets” on page 2-4).

Input, output, and state names and input/output groups are defined for model
model.

The structure Index has the fields detailed in the following table.

Field Name Description

ManipulatedVariables Indices of manipulated variables within
input vector

MeasuredDisturbances Indices of measured disturbances within
input vector (not including offset=1)

Offset Index of offset=1
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See Also

Field Name Description

WhiteNoise Indices of white noise signals within input
vector

MeasuredOutputs Indices of measured outputs within

output vector

UnmeasuredOutputs Indices of unmeasured outputs within
output vector

The model returned by getestim does not include the additional white noise
added on manipulated variables and measured disturbances to ease the
solvability of the Kalman filter design, as described in Equation 2-6 on page
2-11.

setestim, mpc, mpcstate
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getindist

Purpose
Syntax

Description

See Also

6-14

Unmeasured input disturbance model
model=getindist (MPCobj)

model=getindist (MPCobj) retrieves the linear discrete-time transfer function
used to model unmeasured input disturbances in the MPC setup described by
the MPC object MPCobj. Model model is an LTI object with as many outputs as
the number of unmeasured input disturbances, and as many inputs as the
number of white noise signals driving the input disturbance model.

See Figure 2-2, Model Used for State Estimation, on page 2-9 for details about
the overall model used in the MPC algorithm for state estimation purposes.

mpc, setindist, setestim, getestim, getoutdist



getmpcdata

Purpose Private MPC data structure
Syni‘ax mpcdata=getmpcdata(MPCobj)
Description mpcdata=getmpcdata(MPCobj) returns the private field MPCData of the MPC

object MPCobj. Here, all internal QP matrices, models, estimator gains are
stored at initalization of the object. You can manually change the private data
structure using the setmpcdata command, although you may only need this for
very advanced use of Model Predictive Control Toolbox™ software.

Note Changes to the data structure may easily lead to unpredictable results.

See Also setmpcdata, set, get
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getname

Purpose

Syntax

Description

See Also

6-16

I/0 signal names in MPC prediction model

name=getname (MPCobj, 'input',I)
name=getname (MPCobj, 'output’',I)

name=getname (MPCobj, 'input',I) returns the name of the I-th input signal
in variable name. This is equivalent to name=MPCobj .Model.Plant.
InputName{I}. The name property is equal to the contents of the corresponding
Name field of MPCobj.DisturbanceVariables or
MPCobj.ManipulatedVariables.

name=getname (MPCobj, 'output',I) returns the name of the I-th output
signal in variable name. This is equivalent to
name=MPCobj.Model.Plant.OutputName{I}. The name property is equal to the
contents of the corresponding Name field of MPCobj.OutputVariables.

setname, mpc, set



getoutdist

Purpose

Syntax

Description

See Also

Unmeasured output disturbance model

outdist=getoutdist (MPCobj)
[outdist,channels]=getoutdist (MPCobj)

outdist=getoutdist(MPCobj) retrieves the linear discrete-time transfer
function used to model output disturbances in the MPC setup described by the
MPC object MPCobj. Model outdist is an LTI object with as many outputs as
the number of measured + unmeasured outputs, and as many inputs as the
number of white noise signals driving the output disturbance model.

See Figure 2-2, Model Used for State Estimation, on page 2-9 for details about
the overall model used in the MPC algorithm for state estimation purposes.

[outdist,channels]=getoutdist(MPCobj) also returns the output channels
where integrated white noise was added as an output disturbance model. This
is only meaninful when the default output disturbance model is used, namely
when MPCobj.OutputVariables(i).Integrators is empty for all channels i.
The array channels is empty for user-provided output disturbance models.

mpc, setoutdist, setestim, getestim, getindist
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Purpose

Syntax

Description
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Create MPC controller

MPCobj=mpc
MPCobj=mpc
MPCobj=mpc
MPCobj=mpc
MPCobj=mpc
MPCobj=mpc
MPCobj=mpc

plant)

plant,ts)

plant,ts,p,m)
plant,ts,p,m,weights)
plant,ts,p,m,weights,MV,0V,DV)
models,ts,p,m,weights,MV,0V,DV)

PRy

MPCobj=mpc(plant) creates an MPC controller based on the discrete-time
model plant. The model can be specified either as an LTI object, or as an object
in System Identification Toolbox™ format (IDMODEL object). See “Using
Identified Models” on page 2-20.

MPCobj=mpc(plant,ts) also specifies the sampling time ts for the MPC
controller. A continuous-time plant is discretized with sampling time ts. A
discrete-time plant is resampled if its sampling time is different than the
controller’s sampling time ts. If plant is a discrete-time model with
unspecified sampling time, namely plant.ts=-1, then Model Predictive
Control Toolbox™ software assumes that the plant is sampled with the
controller’s sampling time ts.

MPCobj=mpc(plant,ts,p,m) also specifies prediction horizon p and control
horizon m.

MPCobj=mpc(plant,ts,p,m,weights)also specifies the structure weights of
input, input increments, and output weights (see “Weights” on page 8-7).

MPCobj=mpc(plant,ts,p,m,weights,Mv,0V,DV) also specifies limits on
manipulated variables (MV) and output variables (0V), as well as equal concern
relaxation values, units, etc. Names and units of input disturbances can be also
specified in the optional input DV. The fields of structures MV, OV, and DV are
described in “ManipulatedVariables” on page 8-3, in “OutputVariables” on
page 8-5, and in “DisturbanceVariables” on page 8-6, respectively).

MPCobj=mpc(models,ts,p,m,weights,MV,0V,DV) where model is a structure
containing models for plant, unmeasured disturbances, measured
disturbances, and nominal linearization values, as described in “Model” on
page 8-9.
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Examples

See Also

MPCobj=mpc returns an empty MPC object.

Note Other MPC properties are specified by using set (MPCobj,Propertyl,
Valuel,Property2,Value2,...) or MPCobj.Property=Value.

Define an MPC controller based on the transfer function model s+1/(s2+2s),
with sampling time 7';=0.1 s, and satisfying the input constraint -1< u <1:

Ts=.1; %sSampling time
MV=struct('Min',-1, 'Max',1);
p=20;

m=3;

mpci=mpc(tf([1 1],[1 2 0]1),Ts,p,m,[],MV);

set, get
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Purpose

Syntax

Description

Examples

See Also
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MPC property and function help

mpchelp

mpchelp name

out=mpchelp( name')

mpchelp (MPCobj

mpchelp (MPCobj, 'name');
out=mpchelp(MPCobj, 'name');

mpchelp provides a complete listing of Model Predictive Control Toolbox™
help.

mpchelp name provides online help for the function or property name.
out=mpchelp( name') returns the help text in string, out.

mpchelp(obj) displays a complete listing of functions and properties for the
MPC object, obj, along with the online help for the object’s constructor.

mpchelp(obj, 'name') displays the help for function or property, name, for the
MPC object, obj.

out=mpchelp(obj, 'name') returns the help text in string, out.

To get help on the MPC method getoutdist, you can type:
mpchelp getoutdist

mpcprops



mpcmove

Purpose

Syntax

Description

Compute MPC control action

u=mpcmove (MPCobj,x,ym,r,v)
[u,Info]=mpcmove (MPCobj,x,ym,r,v)

u=mpcmove (MPCobj,x,ym,r,v) computes the current input move u(k), given
the current estimated extended state x(%), the vector of measured outputs
yn(k), the reference vector r(k), and the measured disturbance vector v(%), by
solving the quadratic programming problem based on the parameters
contained in the MPC controller MPCobj.

X is an mpcstate object. It is updated by mpcmove through the internal state
observer based on the extended prediction model (see getestim for details). A
default initial state x for the first call at time £=0 can be simply defined as:

x=mpcstate (MPCobj)

[u,Info]=mpcmove (MPCobj,x,ym,r,v) also returns the structure Info
containing details about the optimal control calculations. Info has the
following fields.

Field Name Description

Uopt Optimal input trajectory over the prediction horizon,
returned as a p-by-n, dimensional array.

Yopt Optimal output sequence over the prediction horizon,
returned as a p-by-n, dimensional array.

Xopt Optimal state sequence over the prediction horizon,
returned as a p-by-n, dimensional array, where
n,=total number of states of the extended state vector.

Topt Prediction time vector (0:p-1)".

Slack Value of the ECR slack variable ¢ at optimum.
Iterations Number of iterations needed by the QP solver.
QPCode Exit code of the QP solver.
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To plot the optimal input trajectory, type:
plot(Topt,Uopt)

The optimal output and state trajectories can be plotted similarly. The input,
output, and state sequences Uopt, Yopt, Xopt, Topt correspond to the predicted
open-loop optimal control trajectories solving the optimization problem
described in “Optimization Problem” on page 2-5. The optimal trajectories
might also help understand the closed-loop behavior. For instance, constraints
that are active in the open-loop optimal trajectory only at late steps of the
prediction horizon might not be active at all in the closed-loop MPC
trajectories. The sequence of optimal manipulated variable increments can be
retrieved from MPCobj .MPCData.MPCstruct.optimalseq.

QPCode returns either 'feasible', 'infeasible' or 'unreliable’ (the latter
occurs when the QP solver terminates because the maximum number of
iterations MPCobj .Optimizer.MaxIter is exceeded; see gpdantz on page 6-33).
When QPCode="'infeasible', then u is obtained by shifting the previous
optimal sequence of manipulated variable rates (stored in

MPCobj .MPCData.MPCstruct.optimalseq inside the MPC object MPCobj), and
summing the first entry of this sequence to the previous vector of manipulated
moves. You may set up different backup strategies for handling infeasible
situations by discarding u and replacing it with a different emergency
decision-variable vector.

r/v can be either a sample (no future reference/disturbance known in advance)
or a sequence of samples (when a preview / look-ahead / anticipative effect is
desired). In the latter case, they must be an array with as many rows as p and
as many columns as the number of outputs/measured disturbances,
respectively. If the number of rows is smaller than p, the last sample is
extended constantly over the horizon, to obtain the correct size.

The default for y and r is MPCobj .Model.Nominal.Y. The default for v is
obtained from MPCobj .Model.Nominal.U. The default for x is
mpcstate(MPCobj,MPCobj.Model.Nominal.X,0,0,U0) where UO are the entries
from MPCobj.Model.Nominal.U corresponding to manipulated variables.

To bypass the MPC Controller block’s internal estimator and use your own
state observer to update the MPC state yourself, you can for instance use the
syntax:
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Examples

xp=x.plant; xd=x.dist; xn=x.noise; % Save current state
u=mpcmove (MPCobj,x,ym,r,v); % x will be updated
% Now call to your state update function:
[xp,xd,xn]=my_estimator(xp,xd,xn,ym); % States get updated
x.plant=xp;x.dist=xd;x.noise=xn;

Model predictive control of a multi-input single-output system (see the demo
MISO.M). The system has three inputs (one manipulated variable, one
measured disturbance, one unmeasured disturbance) and one output.

% Open-loop system parameters

% True plant and true initial state
sys=ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));
x0=[0 0 0 0 0]"';

% MPC object setup

Ts=.2; % sampling time

% Define type of input signals
model.InputGroup=struct('Manipulated',1, 'Measured',2, 'Unmeasured

»3);

% Define constraints on manipulated variable
MV=struct('Min',0, 'Max',1);

Model=[]; % Reset structure Model

Model.Plant=sys;

% Integrator driven by white noise with variance=1000
Model.Disturbance=tf(sqrt(1000),[1 0]);

p=[1; % Prediction horizon (take default one)
m=3; % Control horizon
weights=[]; % Default value for weights

MPCobj=mpc (Model,Ts,p,m,weights,MV);
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% Simulate closed loop system using MPCMOVE
Tstop=30; %Simulation time
xmpc=mpcstate (MPCobj); % Initial state of MPC controller

I
x=x0; % Initial state of Plant
r=1; Output reference trajectory

o°

% State-space matrices of Plant model
[A,B,C,D]=ssdata(c2d(sys,Ts));

YY=[];XX=[1;RR=[1;
for t=0:round(Tstop/Ts)-1,
XX=[XX,X]1;

o
©

Define measured disturbance signal
=0

<

;

if t*Ts>=10, v=1; end
% Define unmeasured disturbance signal
=0

o

bl

if t*Ts>=20, d=-0.5; end

% Plant equations: output update

% (note: no feedrthrough from MV to Y, D(:,1)=0)
y=C*x+D(:,2)*v+D(:,3)*d;

YY=[YY,y];

% Compute MPC law
u=mpcmove (MPCobj,xmpc,y,r,v);

% Plant equations: state update
X=A*x+B(:,1)*u+B(:,2)*v+B(:,3)*d;
end

% Plot results
plot(0:Ts:Tstop-Ts,YY);grid

See Also mpc, mpcstate, sim, setestim, getestim
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Purpose Provide help on MPC controller’s properties
Syntax mpcprops
Description mpcprops displays details on the generic properties of MPC controllers. It

provides a complete list of all the fields of MPC objects with a brief description
of each field and the corresponding default values.

See Also set, get, mpchelp
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Purpose
Syntax

Description

Examples
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MPC simulation options
SimOptions=mpcsimopt (mpcobj)

The purpose of mpcsimopt is to create an object SimOptions of class @mpcsimopt
for specifying additional parameters for simulation with sim.

SimOptions=mpcsimopt (mpcobj) creates an empty object SimOptions which is
compatible with the MPC object mpcobj. The fields of the object SimOptions
and their description are reported in Table 8-11, MPC Simulation Options
Properties, on page 8-14.

We want to simulate the MPC control of a multi-input multi-output (MIMO)
system under predicted / actual plant model mismatch (demo simmismatch.m).
The system has two manipulated variables, two unmeasured disturbances, and
two measured outputs.

% Open-loop system parameters
p1t = tf(1,[1 2 1]1)*[1 1; 0 1];
plant = ss([p1 p1]);

% Define I/0 types
plant=setmpcsignals(plant, 'MV',[1 2],'UD',[3 4]);

% Define I/0 names (optional)
set(plant, 'InputName',{'mv1', 'mv2', 'umd3', 'umd4'});

% Model for unmeasured input disturbances
distModel = eye(2,2)*ss(-.5,1,1,0);

% Create MPC object
mpcobj = mpc(plant,1,40,2);
mpcobj.Model.Disturbance = distModel;

% Closed-loop MPC simulation with model mismatch and unforeseen
% unmeasured disturbance inputs

% Define plant model generating the data
p2 = tf(1.5,[0.1 1 2 1])*[1 1; 0 1];
psim = ss([p2 p2 tf(1,[1 1])*[0;1]1]);
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psim=setmpcsignals(psim, ‘MV',[1 2],'UD',[3 4 5]);

% Closed-loop simulation

dist=ones(1,3); % Unmeasured disturbance trajectory
refs=[1 2]; % Output reference trajectory
Tf=100; % Total number of simulation steps
options=mpcsimopt(mpcobj);

options.unmeas=dist;

options.model=psim;

sim(mpcobj,Tf,refs,options);

See Also sim
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Purpose

Syntax

Description

See Also
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Define MPC controller state

xmpc=mpcstate (MPCobj,xp,xd,xn,u)
xmpc=mpcstate (MPCobj)

xmpc=mpcstate (MPCobj,xp,xd,xn,u) defines an mpcstate object for state
estimation and optimization in an MPC control algorithm based on the MPC
object MPCobj. The state of an MPC controller contains the estimates of the
states x(k), x4(k), x,,,(k), where x(k) is the state of the plant model, x4(%) is the
overall state of the input and output disturbance model, x,,(k) is the state of the
measurement noise model, and the value of the last vector u(k-1) of
manipulated variables. The overall state is updated from the measured output
ym(k) by a linear state observer (see “State Observer” on page 2-10).

xmpc=mpcstate (MPCobj) returns a default extended initial state that is
compatible with the MPC controller MPCobj. Such a default state has plant
state and previous input initialized at nominal values, and the states of the
disturbance and noise models at zero.

Note that mpcstate objects are updated by mpcmove through the internal state
observer based on the extended prediction model.

getoutdist, setoutdist, setindist, getestim, setestim, ss, mpcmove
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Purpose

Syntax

Description

See Also

Start Model Predictive Controller GUI

mpctool

mpctool (MPCobj)

mpctool (MPCobj, 'objname')

mpctool (MPCobj1, MPCobj2, ...)

mpctool (MPCobj1, 'objnamet1', MPCobj2, 'objname2', ...)
mpctool('TaskName')

[w, h] = mpctool( ... )

mpctoolstarts the GUIL For more information about designing and testing
model predictive controllers, see Chapter 5, “Reference for the Design Tool
GUIL”

mpctool (MPCobj)starts the GUI and loads MPCobj, which is an existing
controller object.

mpctool (MPCobj, 'objname')assigns objname (specified as a string) to the
controller you are loading into the GUI. If you do not specify a name, the GUI
uses the name of the variable that stores the controller object.

mpctool (MPCobj1, MPCobj2, ...)loads the specified list of controllers.

mpctool (MPCobj1, 'objnamei', MPCobj2, 'objname2', ...)loads the
specified list of controllers and assigns each controller the specified name.

mpctool('TaskName')starts the GUI and creates a new Model Predictive
Control design task with the name specified by the string ' TaskName ' .

[w, h] = mpctool( ... )creates optional handle outputs. wis the
explorer.Workspace handle, which points to the GUI window (and possibly
other tasks, such as those created by Simulink® Control Design™ software). h
is the mpcnodes.MPCGUI handle, which points to the new Model Predictive
Controller design task.

mpc
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Purpose

Syntax

Description

See Also
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Change toolbox verbosity level

mpcverbosity on
mpcverbosity off
mpcverbosity

mpcverbosity on enables messages displaying default operations taken by
Model Predictive Control Toolbox™ software during the creation and
manipulation of model predictive control objects.

mpcverbosity off turns messages off.
mpcverbosity just shows the verbosity status.
By default, messages are turned on.

See also “Construction and Initialization” on page 8-13.

mpc



pack

Purpose Reduce size of MPC object in memory
Syntax pack (MPCobj)
Description pack (MPCobj) cleans up information build at initialization and stored in the

MPCData field of the MPC object MPCobj. This reduces the amount of bytes in
memory required to store the MPC object. For MPC objects based on large
prediction models, it is recommended to pack the object before saving the object
to file, in order to minimize the size of the file.

See Also mpc, getmpcdata, setmpcdata, compare
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Purpose
Syntax

Description

See Also
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Plot responses generated by MPC simulations
plot(MPCobj,t,y,r,u,v,d)

plot(MPCobj,t,y,r,u,v,d) plots the results of a simulation based on the MPC
object MPCobj. t is a vector of length Nt of time values, y is a matrix of output
responses of size [Nt,Ny] where Ny is the number of outputs, r is a matrix of
setpoints and has the same size as y, u is a matrix of manipulated variable
inputs of size [Nt,Nu] where Nu is the number of manipulated variables, v is a
matrix of measured disturbance inputs of size [Nt,Nv] where Nv is the number
of measured disturbance inputs, and d is a matrix of unmeasured disturbance
inputs of size [Nt,Nd] where Nd is the number of unmeasured disturbances
input.

sim, mpc



qgpdantz

Purpose

Syntax

Description

Examples

Solve convex quadratic program using Dantzig-Wolfe’s algorithm

[xopt,lambda,how]=gpdantz(H,f,A,b,xmin)
[xopt,lambda,how]=gpdantz(H,f,A,b,xmin,maxiter)

[xopt,lambda,how]=gpdantz(H,f,A,b,xmin) solves the convex quadratic
program

min %xTHx +fo
subject to Ax<b,x>x, .

using Dantzig-Wolfe’s active set method [1]. The Hessian matrix H should be
positive definite. By default, xmin=1e-5. Vector xopt is the optimizer. Vector
lambda contains the optimal dual variables (Lagrange multipliers).

The exit flag how is either 'feasible', 'infeasible' or 'unreliable'. The
latter occurs when the solver terminates because the maximum number
maxiter of allowed iterations was exceeded.

The solver is implemented in qpsolver.mex. Dantzig-Wolfe’s algorithm uses
the direction of the largest gradient, and the optimum is usually found after
about n+q iterations, where n=dim(x) is the number of optimization variables,
and g=dim(b) is the number of constraints. More than 3(n+q) iterations are
rarely required (see Chapter 7.3 of [2]).

Solve a random QP problem using quadprog from the Optimization Toolbox™
software and gpdantz.

n=50; % Number of vars
H=rand(n,n) ;H=H'*H;H=(H+H')/2;
f=rand(n,1);
A=[eye(n);-eye(n)];
b=[rand(n,1);rand(n,1)];

x1=quadprog(H,f,A,b);
[x2,how]=qgpdantz(H,f,A,b,-100*0nes(n,1));
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References [1] Fletcher, R. Practical Methods of Optimization, John Wiley & Sons,
Chichester, UK, 1987.

[2] Dantzig, G.B. Linear Programming and Extensions, Princeton University
Press, Princeton, 1963.

6-34



set

Purpose

Syntax

Description

See Also

Set or modify MPC object properties

set(sys, 'Property',Value)

set(sys, 'Property1',Valuel, 'Property2',Value2,...)
set(sys, 'Property')

set(sys)

The set function is used to set or modify the properties of an MPC controller
(see “MPC Controller Object” on page 8-2 for background on MPC properties).
Like its Handle Graphics® counterpart, set uses property name/property value
pairs to update property values.

set (MPCobj, 'Property',Value) assigns the value Value to the property of the
MPC controller MPCobj specified by the string 'Property'. This string can be
the full property name (for example, 'UserData') or any unambiguous
case-insensitive abbreviation (for example, 'user').

set(MPCobj, 'Propertyl',valuel, 'Property2',value2,...) sets multiple
property values with a single statement. Each property name/property value
pair updates one particular property.

set(MPCobj, 'Property') displays admissible values for the property specified
by 'Property'. See “MPC Controller Object” on page 8-2 for an overview of
legitimate MPC property values.

set(sys) displays all assignable properties of sys and their admissible values.

mpc, get
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Purpose

Syntax

Description

6-36

Modify MPC object's linear state estimator

setestim(MPCobj,M)
setestim(MPCobj, 'default')

The setestim function modifies the linear estimator gain of an MPC object.
The state estimator is based on the linear model (see “State Estimation” on
page 2-9)

x(k+1) = Ax(k) + B, u(k) + B, v(k)
Y (k) = C, x(k)+D, v(k)

where v(k) are the measured disturbances, u(k) are the manipulated plant
inputs, y,, (k) are the measured plant outputs, and x(%) is the overall state
vector collecting states of plant, unmeasured disturbance, and measurement
noise models. The order of the states in x is the following: plant states;
disturbance models states; noise model states.

setestim(MPCobj,M), where MPCobj is an MPC object, changes the default
Kalman estimator gain stored in MPCobj to that specified by matrix M.

setestim(MPCobj, 'default') restores the default Kalman gain.

The estimator used in Model Predictive Control Toolbox™ software is
described in “State Estimation” on page 2-9. The estimator’s equations are as
follows.

Predicted Output Computation:
¥, (klk—1) = C, x(k|k—1)+D, v(k)

Measurement Update:
x(k|k) = x(k|k—1)+M(y,,(k)~y,,(k|k~1))

Time Update:
F(k+1|k) = AZ(k|k))+ B, u(k)+B,v(k)



setestim

Examples

See Also

By combining these three equations, the overall state observer is

x(k+1|k) = (A-LC, )x(k|k)+ Ly, (k) +B,u(k)+(B,~LD,, )v(k)

where L=AM.

Note The estimator gain M has the same meaning as the gain M in function
DKALMAN in Control System Toolbox™ software.

Matrices A, B, B, C,,;, D,,,, can be retrieved using getestim as follows:
[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)

As an alternative, they can be retrieved from the internal structure
MPCobj .MPCData.MPCstruct under the fields A,Bu,Bv,Cm,Dvm (see getmpcdata
on page 6-15).

To design an estimator by pole placement, you can use the commands
assuming that the linear system AM=L is solvable.

[M,A,Cm]=getestim(MPCobj) ;
L=place(A',Cm',observer_poles)';
M=A\L;

setestim(MPCobj,M);

Note The pair (A,C,,) describing the overall state-space realization of the
combination of plant and disturbance models must be observable for the state
estimation design to succeed. Observability is checked in Model Predictive
Control Toolbox software at two levels: (1) observability of the plant model is
checked at construction of the MPC object, provided that the model of the
plant is given in state-space form; (2) observability of the overall extended
model is checked at initialization of the MPC object, after all models have
been converted to discrete-time, delay-free, state-space form and combined
together (see the note on page 2-12).

getestim, mpc, mpcstate
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Purpose

Syntax

Description

See Also
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Modify unmeasured input disturbance model

setindist (MPCobj, 'integrators')
setindist (MPCobj, 'model,model)

setindist (MPCobj, 'integrators') imposes the default disturbance model
for unmeasured inputs, that is, for each unmeasured input disturbance
channel, an integrator is added unless there is a violation of observability,
otherwise the input is treated as white noise with unit variance (this is
equivalent to MPCobj .Model.Disturbance=[1]).

setindist (MPCobj, 'model',model) sets the input disturbance model to model
(this is equivalent to MPCobj.Model.Disturbance=model).

mpc, getindist, setestim, getestim, setoutdist
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Purpose
Syntax

Description

See Also

Set private MPC data structure
setmpcdata (MPCobj,mpcdata)

setmpcdata(MPCobj,mpcdata) changes the private field MPCData of the MPC
object MPCobj, where all internal QP matrices, models, estimator gains are
stored at initalization of the object. You may only need this for very advanced
use of Model Predictive Control Toolbox™ software.

Note Changes to the data structure may easily lead to unpredictable results.

getmpcdata, set, get, pack
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Purpose
Syntax

Description

Examples
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Set signal types in MPC plant model
P=setmpcsignals(P,SignalTypel,Channels1,SignalType2,Channels2,...)
The purpose of setmpcsignals is to set I/O channels of the MPC plant model P.

P must be an LTI object. Valid signal types, their abbreviations, and the
channel type they refer to are listed below.

Signal Type Abbreviation Channel
Manipulated MV Input
MeasuredDisturbances MD Input
UnmeasuredDisturbances ub Input
MeasuredOutputs MO Output
UnmeasuredOutputs uo Output

Unambiguous abbreviations of signal types are also accepted.

P=setmpcsignals(P) sets channel assignments to default, namely all inputs
are manipulated variables (MVs), all outputs are measured outputs (MOs).
More generally, input signals that are not explicitly assigned are assumed to
be MVs, while unassigned output signals are considered as MOs.

We want to define an MPC object based on the LTI discrete-time plant model
sys with four inputs and three outputs. The first and second input are
measured disturbances, the third input is an unmeasured disturbance, the
fourth input is a manipulated variable (default), the second output is an
unmeasured, all other outputs are measured.

sys=setmpcsignals(sys,'MD',[1 2],'UD',[3],'U0"',[2]);
mpc1=mpc(sys);



setmpcsignals

Note When using setmpcsignals to modify an existing MPC object, be sure
that the fields Weights, MV, OV, DV, Model.Noise, and Model.Disturbance are
consistent with the new I/O signal types.

See Also mpc, set
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Purpose

Syntax

Description

See Also

6-42

Set I/0 signal names in MPC prediction model

setname (MPCobj, 'input',I,name)
setname (MPCobj, 'output',I,name)

setname (MPCobj, 'input',I,name) changes the name of the I-th input signal
to name. This is equivalent to MPCobj .Model.Plant.InputName{I}=name. Note
that setname also updates the read-only Name fields of
MPCobj.Disturbancevariables and MPCobj.ManipulatedvVariables.

setname (MPCobj, 'output',I,name) changes the name of the I-th output
signal to name. This is equivalent to MPCobj .Model.Plant.OutputName{I}
=name. Note that setname also updates the read-only Name field of
MPCobj.OutputVariables.

Note The Name properties of Manipulatedvariables, OutputVariables, and
DisturbanceVariables are read-only. You must use setname to assign signal
names, or equivalently modify the Model.Plant.InputName and
Model.Plant.OutputName properties of the MPC object.

getname, mpc, set
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Purpose

Syntax

Description

See Also

Modify unmeasured output disturbance model

setoutdist (MPCobj, 'integrators')
setoutdist (MPCobj, 'remove',channels)
setoutdist (MPCobj, 'model',model)

setoutdist (MPCobj, 'integrators') specifies the default method output
disturbance model, based on the specs stored in
MPCobj.OutputVariables.Integrator and
MPCobj.Weights.OutputVvariables. Output integrators are added according to
the following rules:

1 Outputs are ordered by decreasing output weight (in case of time-varying
weights, the sum of the absolute values over time is considered for each
output channel. In case of equal output weight, the order within the output
vector is followed).

2 By following such order, an output integrator is added per measured
outputs, unless there is a violation of observability or the corresponding
value in MPCobj.OutputVariables.Integrator is zero. A warning message
is given when an integrator is added on an unmeasured output channel.

setoutdist (MPCobj, 'remove',channels) removes integrators from the
output channels specified in vector channels. This corresponds to setting
MPCobj .OutputVariables(channels).Integrator=0. The default for
channelsis (1:ny), where ny is the total number of outputs, that is, all output
integrators are removed.

setoutdist (MPCobj, 'model',model) replaces the array of output integrators
designed by default according to MPCobj.OutputVariables.Integrator with
the LTI model model. The model must have ny outputs. If no model is specified,
then the default model based on the specs stored in
MPCobj.OutputVariables.Integrator and
MPCobj.Weights.OutputVariables is used (same as setoutdist (MPCobj,
‘integrators').

mpc, getestim, setestim, setoutdist, setindist
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Purpose

Syntax

Description
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Simulate closed-loop/open-loop response to arbitrary reference and
disturbance signals

sim(MPCobj,T,r)

sim(MPCobj,T,r,v)

sim(MPCobj,T,r,SimOptions) or sim(MPCobj,T,r,v,SimOptions)
[y,t,u,xp,xmpc,SimOptions]=sim(MPCobj,T,...)

The purpose of sim is to simulate the MPC controller in closed loop with a
linear time-invariant model, which, by default, is the plant model contained in
MPCobj.Model.Plant. As an alternative, sim can simulate the open-loop
behavior of the model of the plant, or the closed-loop behavior in the presence
of a model mismatch between the prediction plant model and the model of the
process generating the output data.

sim(MPCobj,T,r) simulates the closed-loop system formed by the plant model
specified in MPCobj.Model.Plant and by the MPC controller specified by the
MPC object MPCobj, and plots the simulation results. T is the number of
simulation steps. r is the reference signal array with as many columns as the
number of output variables.

sim(MPCobj,T,r,v) also specifies the measured disturbance signal v, that
has as many columns as the number of measured disturbances.

Note The last sample of r/v is extended constantly over the simulation
horizon, to obtain the correct size.

sim(MPCobj,T,r,SimOptions) or sim(MPCobj,T,r,v,SimOptions) specifies
the simulation options object SimOptions, such as initial states, input/output
noise and unmeasured disturbances, plant mismatch, etc. See mpcsimopt for
details.

Without output arguments, sim automatically plots input and output
trajectories.

[y,t,u,xp,xmpc,SimOptions]=sim(MPCobj,T,...) instead of plotting
closed-loop trajectories returns the sequence of plant outputs y, the time
sequence t (equally spaced by MPCobj.Ts), the sequence u of manipulated
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variables generated by the MPC controller, the sequence xp of states of the
model of the plant used for simulation, the sequence xmpc of states of the MPC
controller (provided by the state observer), and the options object SimOptions
used for the simulation.

The descriptions of the input arguments and their default values are shown in
the table below.

Input Argument  Description Default
MPCob j MPC object specifying the None
parameters of the MPC control
law
T Number of simulation steps Largest row-size of
r,v,d,n
r Reference signal MPCobj .Model.Nomi
nal.Y
v Measured disturbance signal Entries from
MPCobj.Model.Nomi
nal.uU
SimOptions Object of class @mpcsimopt []

containing the simulation
parameters (See mpcsimopt)

ris an array with as many columns as outputs, v is an array with as many
columns as measured disturbances. The last sample of r/v/d/n is extended
constantly over the horizon, to obtain the correct size.

The output arguments of sim are detailed below.

Output Argument  Description

y Sequence of controlled plant outputs (without noise
added on measured ones)

t Time sequence (equally spaced by MPCobj.Ts)
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Output Argument

Description

u Sequence of manipulated variables generated by
MPC

Xp Sequence of states of plant model (from Model or
SimOptions.Model)

xmpc Sequence of states of MPC controller (estimates of
the extended state). This is a structure with the
same fields as the mpcstate object.

Examples We want to simulate the MPC control of a multi-input single-output system

(the same model as in demo misosim.m). The system has one manipulated
variable, one measured disturbance, one unmeasured disturbance, and one

output.

%Plant model and initial state
sys=ss(tf({1,1,1},{[1 .5 11,[1 1]1,[.7 .5 1]1}));

% MPC object setup

Ts=.2;

% sampling time

sysd=c2d(sys,Ts); % prediction model

% Define type of input signals
sysd=setmpcsignals(model, 'MV',1,'MD',2,'UD',3);

MPCobj=mpc(sysd); % Default weights and horizons

% Define constraints on manipulated variable
MPCobj .MV=struct('Min',0, 'Max',1);

Tstop=30;

% Simulation time

Tf=round(Tstop/Ts); % Number of simulation steps

r=ones(Tf,1);

% Reference trajectory

v=[zeros(Tf/3,1);0nes(2*Tf/3,1)]; % Measured dist. trajectory
sim(MPCobj,Tf,r,v);

See Also mpcsimopt, mpc, mpcmove
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Purpose Display model output/input/disturbance dimensions
Syntax sizes=size (MPCobj)
Description sizes=size(MPCobj) returns the row vector sizes = [n,,, n, n,, n, ng4l

associated with the MPC object MPCobj, where Ny 18 the number of measured
controlled outputs, n,, is the number of manipulated inputs, n,, is the number
of unmeasured controlled outputs, n, is the number of measured disturbances,
and ny is the number of unmeasured disturbances.

size (MPCobj) by itself makes a nice display.

See Also mpc, set
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Purpose

Syntax

Description
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Convert unconstrained MPC controller to state-space linear form

sys=ss(MPCobj)

[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj)

[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj,ref_preview,
md_preview,name_flag)

The ss utility returns the linear controller sys as an LTI system in ss form
corresponding to the MPC controller MPCobj when the constraints are not
active. The purpose is to use the linear equivalent control in Control System
Toolbox™ software for sensitivity analysis and other linear analysis.

sys=ss(MPCobj) returns the linear discrete-time dynamic controller sys
x(k+1) = Ax(k) + By, (k)
u(k) = Cx(k)+Dy, (k)

where y,, is the vector of measured outputs of the plant, and u is the vector of
manipulated variables. The sampling time of controller sys is MPCobj . Ts.

[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj) returns the linearized
MPC controller in its full version, that has the following structure

x(k+1) = Ax(k) + By, (k) +B,r(k) + B v(k) + Bututarget(k) +B

u(k) = Cx(k)+Dy, (k) +D,r(k)+D_v(k) +Dututarget(k) +D g

Note Vector x includes the states of the observer (plant+disturbance+noise
model states) and the previous manipulated variable u(%k-1).

In the general case of nonzero offsets, y,, (as well as r, v, uigrg0t) must be
interpreted as the difference between the vector and the corresponding offset.
Vectors B, Do are constant terms due to nonzero offsets, in particular they
are nonzero if and only if MPCobj .Model.Nominal.DX is nonzero
(continuous-time prediction models), or

MPCobj .Model.Nominal.Dx-MPCobj.Model.Nominal.X is nonzero
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Examples

See Also

(discrete-time prediction models). Note that when Nominal.Xis an equilibrium
state, B, Dogr are zero.

Only the following fields of MPCobj are used when computing the state-space
model: Model, PredictionHorizon, ControlHorizon, Ts, Weights.

[sys,...]=ss(MPCobj,ref preview,md preview,name flag) allows you to
specify if the MPC controller has preview actions on the reference and
measured disturbance signals. If the flag ref_preview='on', then matrices B,
and D, multiply the whole reference sequence:

x(k+1) = Ax(k) +By,, (k) + B, [r(k)r(k+1),...;r(k+p-1)] + ...
u(k) = Cx(k)+Dy, (k) +D,[r(k);r(k+1),.;r(k+p-1)]+ ..

Similarly if the flag md_preview="'on"', then matrices B, and D, multiply the
whole measured disturbance sequence:

x(k+1) = Ax(k) +... + B [v(k)v(k +1);...;v(k+p)] + ...
u(k) = Cx(k)+...+D [v(k)v(k+1);..;v(k+p)]+..

The optional input argument name_flag="'names' adds state, input, and output
names to the created LTI object.

To get the transfer function LTIcon from (y,,,r) to u,

[sys,Br,Dr]=ss(MPCobj);
set(sys,'B',[sys.B,Br],'D',[sys.D,Dr]);

mpc, set, tf, zpk
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Purpose
Syntax

Description

See Also
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Convert unconstrained MPC controller to linear transfer function
sys=tf (MPCobj)

The tf function computes the transfer function of the linear controller
ss(MPCobj) as an LTI system in tf form corresponding to the MPC controller
when the constraints are not active. The purpose is to use the linear equivalent
control in Control System Toolbox™ software for sensitivity and other linear
analysis.

Ss, zpk



trim

Purpose Compute steady-state value of MPC controller state for given inputs and
outputs

Syntax x=trim(MPCobj,y,u)

Description The trim function finds a steady-state value for the plant state vector such that

x=Ax+Bu, y=Cx+Du, or the best approximation of such an x in a least squares
sense, sets noise and disturbance model states at zero, and forms the extended
state vector.

See Also mpc, mpcstate
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Purpose
Syntax

Description

See Also
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Convert unconstrained MPC controller to zero/pole/gain form
sys=zpk (MPCobj)

The zpk function computes the zero-pole-gain form of the linear controller
ss(MPCobj) as an LTI system in zpk form corresponding to the MPC controller
when the constraints are not active. The purpose is to use the linear equivalent
control in Control System Toolbox™ software for sensitivity and other linear
analysis.

ss, tf
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Block Reference (p. 7-2) Description of the available block in the Model Predictive
Control Toolbox™ software
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Block Reference

This section contains block reference pages listed alphabetically.
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Purpose

Library

Description
mo
mv P C ref
md

MFC Contraller

Dialog Box

Compute MPC control law
MPC Simulink Library

The MPC Controller block receives the current measured output, reference
signal, and measured disturbance signal, and outputs the optimal manipulated
variables by solving a quadratic program. The block is based on an MPC object,
which provides performance and constraint specifications, as well as the
sampling time of the block.

<) Block Parameters: MPC Controller i im] 5

r  MPC block (mask) (link)

The MPC Caontroller block lets you design, simulste, and tune model predictive
contrallers.

You can use the MPC Design Tool to creste a newy controller or modify an existing
one.

Reference and measured disturbance signals, by default, are external inputs to the
MPC hlock. In aternative you can specify custom workspace structures,
genersted for example by & 'To Workspace' block (see 'From YWorkspace!' block for
structure format). If the Look Ahead option is selected, the MPC cortroller will use
future values of the corresponding signal when computing current control actions.

Parameters

MPC caontroller I Design... |

Initial contraller state ]

—Input signal
Uze custom
[~ Reference signal h ¥ Look ahesd
I_ Measured disturbance l] |7 Lok ahesd

[¥ Enakle input port for measured disturbance
[~ Enakle input port for externally supplisd manipulated varisbles to plart
[~ Enakle input port for input and outpt limits

Ok | Cancel Help Apply

MPC controller
You must supply an MPC object that defines your controller. There are two
ways to do this. One is to enter the name of the MPC object in your base
workspace. The other is to enter a name in the edit box and then click the
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Design button. This opens the MPC design tool, where you can specify
your controller.

If you are designing a controller in the design tool, you can see how well it
works by running a closed-loop Simulink® simulation without existing the
tool. This makes it easier to tune controller parameters.

When the MPC controller edit box is empty, clicking the Design button
constructs a default MPC controller by obtaining a linearized model from
the Simulink diagram.

When you close the design tool, it prompts you to export the controller as
an MPC object so you can use it in subsequent simulations.

Initial controller state
Initial state of the MPC controller. This must be a valid mpcstate object.

Reference signal

If you select the check box, the edit box to the right must contain the name
of a variable in your workspace that defines the reference signal. This also
enables the Look Ahead check box. Selecting the Look Ahead check box
anticipates reference variations and usually improves reference tracking
(see “Look Ahead and Signals from the Workspace” on page 4-5). If you do
not select the Reference signal check box, the signal connected to the block
ref inport supplies the reference values.

Measured disturbance

Provides options for the measured disturbances (for feedforward
compensation) in the same way as for the reference signals, above.

Enable input port for measured disturbance

This option adds an inport (labeled md) to which you can connect measured
disturbances and for which the controller will provide feedforward
compensation.

Enable input port for externally supplied manipulated variables to
plant
This check box lets you switch between MPC control and another type of
control (e.g., manual control) during a simulation. It adds an inport
(labeled ext.mv) to which you can connect the actual manipulated
variables the plant is receiving. The block uses these in its internal state
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estimates. The following example shows possible connections. See also the
mpcbumpless demo.

If the inport is disabled, or it is enabled with no connected signal, then the
MPC controller updates the internal state estimate by using the MPC
action evaluated at the current time instant.

B

1 o ref hFC _
e = g = 2xtBu
= CxtDu
Reference sk = ¥
' hdanual Switch Flant
MPC Controllar 4
J
N +
Gain Add

Bumpless Switching Between MPC and Another Controller

Enable input port for input and output limits
This check box adds inports to which you can connect time-varying
constraint specifications. Otherwise, the block uses the constant
constraint values stored within its MPC object. Example connections
appear below. See also the mpcvarbounds demo.

When you enable this option, the block interprets an unconnected limit
inport, such as ymin in the example below, as an unconstrained variable.
Also, to prevent numerical difficulties the block enforces a minimum
separation of 1e-5 between lower and upper bounds. Further, if a signal
connected to a lower-bound port exceeds that connected to the
corresponding upper-bound port, the block automatically uses the smaller
signal as the lower bound and vice versa.
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See Also

¥

plant

YYY
¥

LTI System

YYY

mo

F

ref

umin ' ' Step
—— mw MPLC -
umas g umin rl' y y

umax

=

wmin

w

MPC Contraller WM 3

Note The MPC Controller block is a discrete-time block with sampling time
inherited from the MPC object. The MPC block has direct feedthrough from
measured outputs (mo), output references (ref), and measured disturbances
(md) to MPC-manipulated variables (mv), and no direct feedthrough from
externally supplied manipulated variables (ext.mv) to MPC-manipulated
variables (mv).

mpc, mpcstate



Object Reference

MPC Controller Object (p. 8-2)

MPC Simulation Options Object
(p. 8-14)

MPC Simulation Options Object
(p. 8-14)

Description of the MPC object containing the parameters
defining the MPC control law (prediction horizon,
weights, constraints, etc.)

Description of the MPC object containing options for
simulating MPC controllers

Description of the MPC object containing the state of an
MPC controller
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8-2

All the parameters defining the MPC control law (prediction horizon, weights,
constraints, etc.) are stored in an MPC object, whose properties are listed in

Table 8-1.

Table 8-1: MPC Controller Object

Property

Description

ManipulatedVariables
(or MV or Manipulated
or Input)

OutputVariables (or
OV or Controlled or
Output)

DisturbanceVariables
(or DV or Disturbance)

Weights

Model

Ts
Optimizer
PredictionHorizon

ControlHorizon

History
Notes

UserData

Input and input-rate upper and lower bounds,

ECR values, names, units, and input target

Output upper and lower bounds, ECR values,
names, units

Disturbance names and units

Weights defining the performance function

Plant, input disturbance, and output noise
models, and nominal conditions.

Controller’s sampling time
Parameters for the QP solver
Prediction horizon

Number of free control moves or vector of
blocking moves

Creation time
User notes (text)

Any additional data




MPC Controller Object

Table 8-1: MPC Controller Object (Continued)

Property

Description

MPCData (private)

Version (private)

accessorial data

number

Matrices for the QP problem and other

Model Predictive Control Toolbox™ version

ManipulatedVariables
ManipulatedVariables (or MV or Manipulated or Input)is an n,-dimensional
array of structures (n, = number of manipulated variables), one per
manipulated variable. Each structure has the fields described in Table 8-2,
where p denotes the prediction horizon.

Table 8-2: Structure ManipulatedVariables

Field Name

Content

Default

Min

Max

MinECR

MaxECR

Target

1 to p dimensional vector of lower
constraints on a manipulated variable
u

1 to p dimensional vector of upper
constraints on a manipulated variable
u

1 to p dimensional vector describing
the equal concern for the relaxation of
the lower constraints on u

1 to p dimensional vector describing
the equal concern for the relaxation of
the upper constraints on u

1 to p dimensional vector of target
values for the input variable u

-Inf

Inf

0

8-3
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Table 8-2: Structure ManipulatedVariables (Continued)

Field Name

Content

Default

RateMin

RateMax

RateMinECR

RateMaxECR

Name

Units

1 to p dimensional vector of lower
constraints on the rate of a
manipulated variable u

1 to p dimensional vector of upper
constraints on the rate of a
manipulated variable u

1 to p dimensional vector describing
the equal concern for the relaxation of
the lower constraints on the rate of u

1 to p dimensional vector describing
the equal concern for the relaxation of
the upper constraints on the rate of u

Name of input signal. This is
inherited from InputName of the LTI
plant model.

String specifying the measurement
units for the manipulated variable

-Inf if problem
is
unconstrained,
otherwise -10

Inf

InputName of
LTI plant model

Note Rates refer to the difference Au(k)=u(k)-u(k-1). Constraints and weights
based on derivatives du/dt of continuous-time input signals must be properly
reformulated for the discrete-time difference Au(k), using the approximation

du/dt = Au(R)/T.
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OutputVariables

OutputVariables (or OV or Controlled or Output) is an n,-dimensional array
of structures (n, = number of outputs), one per output signal. Each structure
has the fields described in Table 8-3, where p denotes the prediction horizon.

Table 8-3: Structure OutputVariables

Field Name Content Default

Min 1 to p dimensional vector of lower -Inf
constraints on an output y

Max 1 to p dimensional vector of upper Inf
constraints on an output y

MinECR 1 to p dimensional vector describing 1
the equal concern for the relaxation of
the lower constraints on an output y

MaxECR 1 to p dimensional vector describing 1
the equal concern for the relaxation of
the upper constraints on an output y

Name Name of output signal. This is OutputName of
inherited from OutputName of the LTI = LTI plant model
plant model.

Units String specifying the measurement "
units for the measured output

Integrator Magnitude of integrated white noise []

on the output channel (0=no
integrator)

In order to reject constant disturbances due for instance to gain nonlinearities,
the default output disturbance model used in Model Predictive Control Toolbox
software is a collection of integrators driven by white noise on measured

outputs (see “Output Disturbance Model” on page 2-10). Output integrators are
added according to the following rule:

1 Measured outputs are ordered by decreasing output weight (in case of
time-varying weights, the sum of the absolute values over time is considered
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for each output channel, and in case of equal output weight, the order within
the output vector is followed).

2 By following such order, an output integrator is added per measured
outputs, unless there is a violation of observability, or the user forces it by
zeroing the corresponding value in OutputVariables.Integrators).

By default, Outputvariables.Integrators is empty on all outputs. This
enforces the default action of Model Predictive Control Toolbox software,
namely add integrators on measured outputs, do not add integrators on
unmeasured outputs. By setting the entry of
Outputvariables(i).Integrators to zero, no attempt will be made to add
integrated white noise on the i-th output . On the contrary, by setting the entry
of Outputvariables(i).Integrators to one, an attempt will be made to add
integrated white noise on the i-th output (see getoutdist on page 6-17).

DisturbanceVariables
Disturbancevariables (or DV or Disturbance)is an (ny+ng4)-dimensional array
of structures (n, = number of measured input disturbances, ngq = number of

unmeasured input disturbances), one per input disturbance. Each structure
has the fields described in Table 8-4.

Table 8-4: Structure DisturbanceVariables

Field Name Content Default

Name Name of input signal. This is InputName of
inherited from InputName of the LTI LTI plant model
plant model.

Units String specifying the measurement "

units for the manipulated variable

The order of the disturbance signals within the array DisturbanceVariables
is the following: the first n, entries relate to measured input disturbances, the
last n; entries relate to unmeasured input disturbances.
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Note The Name properties of Manipulatedvariables, OutputVariables, and
DisturbanceVariables are read only. You can set signal names in the
Model.Plant.InputName and Model.Plant.OutputName properties of the MPC
object, for instance by using the method setname.

Weights

Weights is the structure defining the QP weighting matrices. Unlike the
InputSpecs and OutputSpecs, which are arrays of structures, weights is a
single structure containing four fields. The values of these fields depend on
whether you are using the standard quadratic cost function (Equation 2-3) or
the alternative cost function (Equation 2-5).

Standard Cost Function. Table 8-5 lists the content of the four fields where p
denotes the prediction horizon, n, the number of manipulated variables, n, the
number of output variables.

The fields ManipulatedvVariables, ManipulatedVvVariablesRate, and
OutputvVariables are arrays with n,, n,, and n, columns, respectively. If
weights are time invariant, then ManipulatedVvariables,
ManipulatedVariablesRate, and OutputVariables are row vectors. However,
for time-varying weights, each field is a matrix with up to p rows. If the number
of rows is less than the prediction horizon, p, the object constructor duplicates
the last row to create a matrix with p rows.

Table 8-5: Weights for the Standard Cost Function (MATLAB® Structure)

Field Name

Content

Default

ManipulatedVariables (or
MV or Manipulated or Input)

ManipulatedVariablesRate
(or MVRate or
ManipulatedRate or
InputRate)

(1 to p)-by-n,
dimensional array of
input weights

(1 to p)-by-n,,
dimensional array of
input-rate weights

zeros(1,nu)

0.1*ones(1,nu)
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Table 8-5: Weights for the Standard Cost Function (MATLAB® Structure) (Continued)

Field Name Content Default

OutputVariables (or OV or (1 to p)-by-n, 1 (The default for output weights is

Controlled or Output) dimensional array of the following: if n, > n,, all outputs
output weights are weighted with unit weight; if

ECR

n,<n,, n, outputs are weighted with
unit weight (with preference given to
measured outputs), while the
remaining outputs receive zero

weight.)
Weight on the slack le5*(max weight)
variable ¢ used for
softening the
constraints

The default ECR weight is 10° times the largest weight specified in
ManipulatedVariables, ManipulatedvVariablesRate, and OutputVariables.

Note All weights must be greater than or equal to zero. If all weights on
manipulated variable increments are strictly positive, the resulting QP
problem is always strictly convex. If some of those weights are zero, the
Hessian matrix of the QP problem may become only positive semidefinite. In
order to keep the QP problem always strictly convex, if the condition number
of the Hessian matrix K,y is larger than 1012, the quantity 10*sqrt (eps) is
added on each diagonal term. This may only occur when all input rates are not
weighted (W2%=0) (see “Cost Function” on page 2-16).

Alternative Cost Function. You can specify off-diagonal Q and R weight matrices in
the cost function. To accomplish this, you must define the fields
ManipulatedVariables, ManipulatedvariablesRate, and OutputVariables
as cell arrays, each containing a single positive-semi-definite matrix of the
appropriate size. Specifically, OutputVariables must be a cell array containing
the n,-by-n, @ matrix, Manipulatedvariables must be a cell array containing
the n,-by-n, R, matrix, and ManipulatedVariablesRate must be a cell array
containing the n,-by-n, R,, matrix (see Equation 2-5 and the demo
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mpcweightsdemo). You can abbreviate the field names as shown in Table 8-5.
You can also use diagonal weights (as defined in Table 8-5) for one or more of
these fields. If you omit a field, the object constructor uses the defaults shown
in Table 8-5.

For example, you can specify off-diagonal weights, as follows

MPCobj.Weights.OutputVariables={Q};
MPCobj.ManipulatedVariables={Ru};
MPCobj.ManipulatedVariablesRate={Rdu};

where 0=Q. Ru=R,,, and Rdu=R,, are positive semidefinite matrices.

Note You cannot specify off-diagonal time-varying weights.

Model

The property Model specifies plant, input disturbance, and output noise
models, and nominal conditions, according to the model setup described in
Figure 2-2. It is specified through a structure containing the fields reported in
Table 8-6.

Table 8-6: Structure Model Describing the Models Used by MPC

Field Name Content Default

Plant LTI model (or IDMODEL) of No default
the plant

Disturbance LTT model describing color of An integrator on
input disturbances each Unmeasured

input channel

8-9
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Table 8-6: Structure Model Describing the Models Used by MPC (Continued)

Field Name Content Default
Noise LTI model describing color of Unit white noise
plant output measurement on each
noise measured output
= identity static
gain
Nominal Structure containing the state, See Table 8-9.

input, and output values where
Model.Plant is linearized

Note Direct feedthrough from manipulated variables to measured outputs in
Model.Plant is not allowed. See “Prediction Model” on page 2-2.

The type of input and output signals is assigned either through the InputGroup
and OutputGroup properties of Model.Plant, or, more conveniently, through
function setmpcsignals, according to the nomenclature described in Table 8-7
and Table 8-8.

Table 8-7: Input Groups in Plant Model

Name Value

ManipulatedVariables (or Indices of manipulated variables
MV or Manipulated or Input)

MeasuredDisturbances (or Indices of measured disturbances
MD or Measured)

UnmeasuredDisturbances Indices of unmeasured disturbances
(or UD or Unmeasured)

8-10
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Table 8-8: Output Groups in Plant Model

Name Value

MeasuredOutputs (or MO or Indices of measured outputs
Measured)

UnmeasuredOutputs (or UO Indices of unmeasured outputs
or Unmeasured)

By default, all inputs are manipulated variables, and all outputs are measured.

Note With this current release, the InputGroup and OutputGroup properties
of LTI objects are defined as structures, rather than cell arrays (see the
Control System Toolbox™ documentation for more details).

The structure Nominal contains the nominal values for states, inputs, outputs
and state derivatives/differences at the operating point where Model.Plant
was linearized. The fields are reported in Table 8-9 (see “Offsets” on page 2-4).

Table 8-9: Nominal Values at Operating Point

Field Description Default
X Plant state at operating point 0
U Plant input at operating point, 0

including manipulated variables,
measured and unmeasured

disturbances
Y Plant output at operating point 0
DX For continuous-time models, DX is 0

the state derivative at operating
point: DX=AX,U). For discrete-time
models, DX=x(k+1)-x(k)=f(X,U)-X.

8-11
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Ts

Sampling time of the MPC controller. By default, if Model.Plant is a
discrete-time model, Ts=Model.Plant.ts. For continuous-time plant models,
you must specify a sampling time for the MPC controller.

Optimizer
Parameters for the QP optimization. Optimizer is a structure with the fields

reported in Table 8-10.

Table 8-10: Optimizer Properties

Field Description Default

MaxIter Maximum number of iterations 200
allowed in the QP solver

Trace On/off ‘off!
Solver QP solver used (only 'ActiveSet') 'ActiveSet'
MinOutputECR Minimum positive value allowed for 1e-10

OutputMinECR and OutputMaxECR

MinOutputECRis a positive scalar used to specify the minimum allowed ECR for
output constraints. If values smaller than MinOutputECR are provided in the
OutputVariables property of the MPC objects a warning message is issued and
the value is raised to MinOutputECR.

PredictionHorizon

PredictionHorizon is an integer value expressing the number p of sampling
steps of prediction.

ControlHorizon

ControlHorizon is either a number of free control moves, or a vector of
blocking moves (see “Optimization Variables” on page 2-14).

History
History stores the time the MPC controller was created.
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Notes
Notes stores user’s notes as a cell array of strings.

UserData
Any additional data stored within the MPC controller object.

MPCData

MPCData is a private property of the MPC object used for storing intermediate
operations, QP matrices, internal flags, etc. See getmpcdata on page 6-15 and
setmpcdata on page 6-39.

Version

Version is a private property indicating the Model Predictive Control Toolbox
version number.

Construction and Initialization

An MPC object is built in two steps. The first step happens at construction of
the object when the object constructor mpc is invoked, or properties are changed
by a set command. At this first stage, only basic consistency checks are
performed, such as dimensions of signals, weights, constraints, etc. The second
step happens at initialization of the object, namely when the object is used for
the first time by methods such as mpcmove and sim, that require the full
computation of the QP matrices and the estimator gain. At this second stage,
further checks are performed, such as a test of observability of the overall
extended model.

Informative messages are displayed in the command window in both phases,
you can turn them on or off using the mpcverbosity command.
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MPC Simulation Options Object

The mpcsimopt object type contains various simulation options for simulating
an MPC controller with the command sim. Its properties are listed in
Table 8-11.

Table 8-11: MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of the plant model
generating the data.

ControllerInitialState  Initial condition of the MPC controller. This
must be a valid @mpcstate object.

UnmeasuredDisturbance Unmeasured disturbance signal entering the
plant.

InputNoise Noise on manipulated variables.

OutputNoise Noise on measured outputs.

RefLookAhead Preview on reference signal ('on' or 'off').

MDLookAhead Preview on measured disturbance signal

(on' or 'off"').

Constraints Use MPC constraints (‘on' or 'off').

Model Model used in simulation for generating the
data.

StatusBar Display the wait bar (‘on' or 'off"').

MvSignal Sequence of manipulated variables (with
offsets) for open-loop simulation (no MPC
action).

OpenLoop Perform open-loop simulation.

The command

SimOptions=mpcsimopt (mpcobj)
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returns an empty @mpcsimopt object. You must use set/ get to change
simulation options.

UnmeasuredDisturbance is an array with as many columns as unmeasured
disturbances, InputNoise and MVSignal are arrays with as many columns as
manipulated variables, OutputNoise is an array with as many columns as
measured outputs. The last sample of the array is extended constantly over the
horizon to obtain the correct size.

Note Nonzero values of ControllerInitialState.LastMove are only
meaningful if there are constraints on the increments of the manipulated
variables.

The property Model is useful for simulating the MPC controller under model
mismatch. The LTI object specified in Model can be either a replacement for
Model.Plant, or a structure with fields P1ant, Nominal. By default, Model is
equal to MPCobj .Model (no model mismatch). If Model is specified, then
PlantInitialState refers to the initial state of Model.Plant and is defaulted
to Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U and Model.Nominal.Y are
inherited from MPCobj .Model.Nominal. Model.Nominal.X/DX is only inherited
if both plants are state-space objects with the same state dimension.
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MPC State Object

The mpcstate object type contains the state of an MPC controller. Its properties
are listed in Table 8-12.

Table 8-12: MPC State Object Properties

Property Description

Plant Array of plant states. Values are absolute, i.e., they
include possible state offsets (cf.Model.Nominal.X).

Disturbance Array of states of unmeasured disturbance models.
This contains the states of the input disturbance
model and, appended below, the states of the
unmeasured output disturbances model.

Noise Array of states of measurement noise model.

LastInput Array of previous manipulated variables u(k-1).
Values are absolute, i.e., they include possible
input offsets (cf. Model.Nominal.U).

The command
mpcstate (mpcobj)

returns a zero extended initial state compatible with the MPC object mpcobj,
and with mpcobj.Plant and mpcobj.LastInput initialized at the nominal
values specified in mpcobj .Model.Nominal.
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